Research interests
Signal processing
Image processing
Biomedical signal and image analysis
Machine learning applications
Research publications
In Arxiv
Shekar, Pavan C., Vivek Kanhangad, Shishir Maheshwari, and T. Sunil Kumar. "Automated Bleeding Detection and Classification in Wireless Capsule Endoscopy with YOLOv8-X." arXiv preprint arXiv:2412.16624 (2024).
Journals
S. Maheshwari, Kandala NVPS Rajesh, Vivek Kanhangad, U. Rajendra Acharya, and T. Sunil Kumar. "Entropy difference-based EEG channel selection technique for automated detection of ADHD." PloS one, vol. 20, no. 4 (2025).
DOI: https://doi.org/10.1371/journal.pone.0319487
Abhay B. Nayak, Aastha Shah, S. Maheshwari, Vijay Anand, Subrata Chakraborty and T. Sunil Kumar, “An empirical wavelet transform-based approach for motion artifact removal in electroencephalogram signals” Elsevier Decision Analytics Journal, vol. 10, 100420, 2024.
DOI: https://doi.org/10.1016/j.dajour.2024.100420
T. Sunil Kumar, Kandala N.V.P.S. Rajesh, S. Maheshwari, V. Kanhangad, and U. R, Acharya, “Automated Schizophrenia detection using local descriptors with EEG signals” Elsevier Engineering Applications of Artificial Intelligence, vol. 117(A), 105602, 2023. (Impact factor: 8) DOI: https://doi.org/10.1016/j.engappai.2022.105602
Abhishek Iyer, Srimit Sritik Das, Reva Teotia, S. Maheshwari, Rishi Raj Sharma, “CNN and LSTM based Ensemble Learning for Human Emotion Recognition using EEG Recordings” Multimedia Tools and Applications, April 2022. (Impact factor: 2.76)
DOI: https://doi.org/10.1007/s11042-022-12310-7
S. Maheshwari, Rishi Raj Sharma and Mohit Kumar, “LBP-based information assisted intelligent system for COVID-19 identification” Computers in Biology and Medicine, vol. 134, 104453, July 2021. (Impact factor: 6.698)
DOI: https://doi.org/10.1016/j.compbiomed.2021.104453
R. R. Sharma, M. Kumar, S. Maheshwari and K. P. Ray, “EVD-ARIMA based time series forecasting model and its application for COVID-19 cases”, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-10, 2021. (Impact factor: 5.332)
DOI: https://doi.org/10.1109/TIM.2020.3041833
S. Maheshwari, V. Kanhangad, R. B. Pachori, S. V. Bhandary, and U. R. Acharya, “Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques,” Computers in Biology and Medicine, vol. 105, pp. 72 – 80, Feb. 2019. (Impact Factor: 6.698)
DOI: https://doi.org/10.1016/j.compbiomed.2018.11.028
S. Maheshwari, R. B. Pachori, V. Kanhangad, S. V. Bhandary, and U. R. Acharya, “Iterative variational mode decomposition based automated detection of glaucoma using fundus images,” Computers in Biology and Medicine, vol. 88, pp. 142 – 149, Sept. 2017. (Impact Factor: 6.698)
DOI: https://doi.org/10.1016/j.compbiomed.2017.06.017
S. Maheshwari, R. B. Pachori and U. R. Acharya, “Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 3, pp. 803-813, May 2017. (Impact Factor: 7.021)
DOI: https://doi.org/10.1109/JBHI.2016.2544961
Book/Book-chapter
S. Maheshwari, Kandala N V P S Rajesh, Usha Desai, and T. Sunil Kumar, “An Overview of Recent Approaches in Brain-Computer Interface Systems using Electroencephalography”, in Human-Machine Interface Technology Advancements and Applications (CRC Press), Taylor and Francis, 2023. (https://doi.org/10.1201/9781003326830)
Conferences
S. Maheshwari, T. S. Kumar and Kandala N V P S Rajesh, “Schizophrenia detection using Entropy Difference-based Electroencephalogram Channel Selection Approach,” 46th International Conference of the IEEE Engineering in Medicine & Biology Society, Orlando, Florida, USA, July 2024.
S. Maheshwari and T. S. Kumar, “A Comparison of Local Descriptor-based Data Augmentation Techniques for Glaucoma Detection using Retinal Fundus Images,” IEEE 10th International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 2022, pp. 01-04. DOI: 10.1109/EHB55594.2022.9991688.
S. Maheshwari and U. C. Pati, “Mosaicing of images using unsharp masking algorithm for interest point detection,” IEEE International Conference on Advanced Communications, Control and Computing Technologies, Ramanathapuram, 2014, pp. 1431-1434. DOI: https://doi.org/10.1109/ICACCCT.2014.7019338