Learning-Based Control
Journal Papers
K. He, S. Shi, T. van den Boom, and B. De Schutter. "State-action control barrier functions: Imposing safety on learning-based control with low online computational costs." IEEE Transactions on Automatic Control (early access), 2025. Link: ArXiv IEEE
S. Shi, A. Tsiamis, and B. De Schutter. "Suboptimality analysis of receding horizon quadratic control with unknown linear systems and its applications in learning-based control."IEEE Transactions on Automatic Control (early access), 2026. Link: ArXiv IEEE
C. Liu, S. Shi, and B. De Schutter. "Certainty-Equivalence Model Predictive Control: Stability, Performance, and Beyond." Conditionally accepted by IEEE Transactions on Automatic Control, 2025. Link: ArXiv
C. Liu, S. Shi, and B. De Schutter. "On the Regret of Model Predictive Control with Imperfect Inputs." IEEE Control Systems Letters, 2025. Link: IEEE
K. He, S. Shi, T. van den Boom, and B. De Schutter. "Approximate dynamic programming for constrained linear systems: A piecewise quadratic approximation approach." Automatica, 2024. Link: Elsevier
K. He, S. Shi, T. van den Boom, and B. De Schutter. "Approximate Dynamic Programming for Constrained Piecewise Affine Systems with Stability and Safety Guarantees." IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024. Link: IEEE ArXiv
Conference Proceedings
K. He, S. Shi, T. van den Boom, and B. De Schutter. "Efficient and Safe Learning-based Control of Piecewise Affine Systems Using Optimization-Free Safety Filters." Conference on Decision and Control (CDC), 2024. Link: IEEE
C. Liu, S. Shi, and B. De Schutter. "Stability and performance analysis of model predictive control of uncertain linear systems." Conference on Decision and Control (CDC), 2024. Link: IEEE ArXiv
A. Athrey, O. Mazhar, M. Guo, B. De Schutter, and S. Shi. "Regret analysis of learning-based linear quadratic gaussian control with additive exploration." European Control Conference (ECC), 2024. Link: IEEE ArXiv
S. Shi and M. Lazar. “A recursively feasible distributed robust MPC algorithm for vehicle platooning.” IFAC Workshop on Distributed Estimation and Control in Networked Systems, 2018. Link: Elsevier
S. Shi and M. Lazar. “On distributed model predictive control for vehicle platooning with a recursive feasibility guarantee.” IFAC World Congress, 2017. Link: Elsevier
Submitted Papers
S. Shi, J. Sass, J. Wu, M. Kim, Y. Ma, S. Shin, R. Findeisen, R. D. Braatz,"Bang-Ride Optimal Control: Monotonicity, External Positivity, and Fast Battery Charging", submitted to IEEE Transactions on Automatic Control, 2025. Link: ArXiv
C. Liu, A. Anil, S. Shi, and B. De Schutter. "Robust Adaptive Discrete-Time Control Barrier Certificate." Under review by Automatica, 2025. Link: ArXiv
K. He, S. Shi, T. van den Boom, and B. De Schutter. "From Learning to Safety: A Direct Data-Driven Framework for Constrained Control." Under review by IEEE Transactions on Automatic Control, 2025. Link: ArXiv
Learning Dynamical Systems
Journal Papers
X. Cheng, S. Shi, I. Lestas, and P. M. J. Van den Hof. “Identifiability in dynamic acyclic networks with partial excitations and measurements,” IEEE Transactions on Automatic Control, 2025. Link: IEEE ArXiv
S. Shi, X. Cheng, and P. M. J. Van den Hof. “Single module identifiability in linear dynamic networks with partial excitation and measurement,” IEEE Transactions on Automatic Control, 2023. Link: IEEE ArXiv
X. Cheng, S. Shi, I. Lestas, and P. M. J. Van den Hof. “A necessary condition for network identifiability with partial excitation and measurement,” IEEE Transactions on Automatic Control, 2023. Link: IEEE ArXiv
S. Shi, O. Mazhar, and B. De Schutter. "Finite-sample analysis of identification of switched linear systems with arbitrary or restricted switching." IEEE Control Systems Letters, 2022. Link: IEEE
S. Shi, X. Cheng, and P. M. J. Van den Hof. “Generic identifiability of subnetworks in a linear dynamic network: the full measurement case,” Automatica, 2022. Link: Elsevier ArXiv
H. J. Dreef, S. Shi, X. Cheng, M. C. F. Donkers, and P. M. J. Van den Hof. “Excitation allocation for generic identifiability of linear dynamic networks with fixed modules,” IEEE Control Systems Letters, 2022. Link: IEEE
X. Cheng, S. Shi, I. Lestas, and P. M. J. Van den Hof. “Allocation of excitation signals for generic identifiability of linear dynamic networks,” IEEE Transactions on Automatic Control, 2022. Link: IEEE ArXiv
R. J. C. van Esch, S. Shi*, A. Bernas, S. Zinger, A. P. Aldenkamp, and P. M. J. Van den Hof. “A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect,” Computers in Biology and Medicine, 2020. *Corresponding author. Link: Elsevier ArXiv
Software
Matlab toolbox for network identification (as a co-developer): https://www.sysdynet.net/
Associated paper: P. M. J. Van den Hof, S. Shi, et al. “SYSDYNET - A MATLAB App and Toolbox for Dynamic Network Identification.” IFAC Symposium on Systems Identification, 2024. Link: Elsevier
Conference Proceedings
S. Shi, Z. Sun, and B. De Schutter. “A behavioral perspective on models of linear dynamical networks with manifest variables.” European Control Conference, 2024. Link: IEEE ArXiv
S. Shi, X. Cheng, B. De Schutter, and P. M. J. Van den Hof. “Signal selection for local module identification in linear dynamic networks: A graphical approach.” IFAC World Congress, 2023. Link: Elsevier
S. Shi, X. Cheng, and P. M. J. Van den Hof. “Excitation allocation for generic identifiability of a single module in dynamic networks: A graphic approach.” IFAC World Congress, 2020. Link: Elsevier
X. Cheng, S. Shi, and P. M. J. Van den Hof. “Allocation of excitation signals for generic identifiability of dynamic networks.” Conference on Decision and Control, 2019. Link: IEEE ArXiv
S. Shi, G. Bottegal, and P. M. J. Van den Hof. “Bayesian topology identification of linear dynamic networks.” European Control Conference, 2019. Link: IEEE ArXiv
Submitted Papers
P. M. J. Van den Hof, S. Shi, S. Fonken, K. R. Ramaswamy, H. Hjalmarsson, and A. Dankers. “Data-informativity conditions for structured linear systems with implications for dynamic networks,” Under review by Automatica, 2024. Link: ArXiv