It's improved and longer this time!
Ascending-E Notation (E+) is an alternative extension of xE# (Extended Hyper-E Notation) because I thought that the Extensible-E System (ExE) was just too "dependent" on BEAF. (I mean, some saibianisms literally use it. / 22nd of june 2024 update: I realized that ##xE^ and /xE^ exist, but they're ill-defined.)
It works just like the latest formalized ExE component (#xE^ at the moment) but with new systems of fundamental sequences.
Before those stuff, let me introduce you a new term:
E[#] Structure: A delimiter that is in form E[B]a$a$a$...$a$a$a where a's can be anything, B is the base (typically a hyperion (#)) and $'s are delimiters.
And a few symbols:
◆ is the unchanged remainder of the expression.
■ is (the rest of) some delimiter.
△ is some delimiter that is not decomposable.
▲ is some delimiter that is decomposable.
Evaluate E◆n normally unless ◆ = [■]. In that case: E[■]n = ■^n, (E[■](■_2)*#)[n] = (E[■](■_2))^n, and (E[■]▲)[n] = E[■](▲[n])
(E◆#{■}▲)[n] = (E◆#{■}(▲[n]))
((E[■_3]◆#{■}(■_4))>(■_2*#))[n] = (E[(E[(E[...(E[(E[(E[■_3]◆#{■}(■_4))>(■_2)]◆#{■}(■_4))>(■_2)]◆#{■}(■_4))>(■_2)...]◆#{■}(■_4))>(■_2)]◆#{■}(■_4))>(■_2)]◆#{■}(■_4))>(■_2) with n E's
((E[■_2]◆#{■}(■_3))>▲)[n] = ((E[■_2]◆#{■}(■_3))>(▲[n]))
(E◆#{■}(■_2)*#)[n] = (E◆#{■}(■_2))>(E◆#{■}(■_2))>(E◆#{■}(■_2))>...>(E◆#{■}(■_2))>(E◆#{■}(■_2))>(E◆#{■}(■_2)) with n (E◆#{■}(■_2))'s
Here's the interesting part of this: # is decomposable, but ## isn't.
The 5 main rules (From xE^) still apply.
E3(E[#]#{#}#)3
= E3(E[#]#{#}#)[3]3
= E3(E[#]#{#}#[3])3
= E3(E[#]#{#}3)3
= E3(E[#](E[#]#{#}2))3
= E3(E[#](E[#](E[#]#{#}1)))3
= E3(E[#](E[#](E[#]#)))3
= E3(E[#](E[#](E[#]#)))[3]3
= ...
= E3(E[#](E[#](E[#]#[3])))3
= E3(E[#](E[#](E[#]3)))3
= E3(E[#](E[#]###))3
= E3(E[#](E[#]###))[3]3
= E3(E[#](E[#]###)[3])3
= ...
= E3(E[#](E[#]##)*(E[#]##)*(E[#]##))3
= ...
The notation is ready, so time to calculate the growth rate! (Delimiter -> FGH Ordinal)
E[#]# ≈ ω^ω
E[#]## ≈ ω^ω^2
E[#](E[#]#) ≈ ω^ω^ω
E[#]#{#}# ≈ ε0
E[E[#]#{#}#]#{#}# ≈ ε1
(E[#]#{#}#)># ≈ εω
(E[#]#{#}#)>(E[#]#{#}#) ≈ εε0
(E[#]#{#}##) ≈ ζ0
(E[#]#{#}###) ≈ η0
(E[#]#{#}(E[#]#)) ≈ φ(ω,0)
(E[#]#{#}#{#}#) ≈ φ(1,0,0)
(E[#]#{#}#{#}##) ≈ φ(1,1,0)
(E[#]#{#}#{#}#{#}#) ≈ φ(2,0,0)
(E[#]#{##}#) ≈ φ(ω,0,0)
(E[#]#{##}#{#}#) ≈ φ(1,0,0,0)
(E[#]#{##}#{#}##) ≈ φ(1,0,1,0)
(E[#]#{##}#{#}#{#}#) ≈ φ(1,1,0,0)
(E[#]#{##}#{##}#) ≈ φ(1,ω,0,0)
(E[#]#{##}#{##}#{#}#) ≈ φ(2,0,0,0)
(E[#]#{###}#) ≈ φ(ω,0,0,0)
(E[#]#{###}#{#}#) ≈ φ(1,0,0,0,0)
(E[#]#{###}#{###}#{#}#) ≈ φ(2,0,0,0,0)
(E[#]#{####}#{#}#) ≈ φ(1,0,0,0,0,0)
E[#]#{E[#]#}# ≈ ψ0(Ω^Ω^ω)
E[#]#{E[#]#}#{#}# ≈ ψ0(Ω^Ω^Ω)
E[#]#{E[#]#}#{#}## ≈ ψ0(Ω^(Ω^Ω+1))
E[#]#{E[#]#}#{#}#{#}# ≈ ψ0(Ω^(Ω^Ω+Ω))
E[#]#{E[#]#}#{##}# ≈ ψ0(Ω^(Ω^Ω+Ωω))
E[#]#{E[#]#}#{##}#{#}# ≈ ψ0(Ω^(Ω^Ω+Ω^2))
E[#]#{E[#]#}#{###}#{#}# ≈ ψ0(Ω^(Ω^Ω+Ω^3))
E[#]#{E[#]#}#{E[#]#}#{#}# ≈ ψ0(Ω^(Ω^Ω*2))
E[#]#{(E[#]#)*#}# ≈ ψ0(Ω^(Ω^Ω*ω))
E[#]#{(E[#]#)*#}#{#}# ≈ ψ0(Ω^Ω^(Ω+1))
E[#]#{(E[#]#)*##}#{#}# ≈ ψ0(Ω^Ω^(Ω+2))
E[#]#{(E[#]#)*(E[#]#)}#{#}# ≈ ψ0(Ω^Ω^Ω2)
E[#]#{E[#]##}#{#}# ≈ ψ0(Ω^Ω^Ω^2)
E[#]#{E[#]#{#}2}#{#}# ≈ ψ0(Ω^Ω^Ω^Ω)
E[#]#{E[#]#{#}3}#{#}# ≈ ψ0(Ω^Ω^Ω^Ω^Ω)
E[#]#{E[#]#{#}#}# ≈ ψ0(Ω_2)
E[#]#{E[E[#]#{#}#]#{#}#}# ≈ ψ0(Ω_2*2)
E[#]#{(E[#]#{#}#)>#}# ≈ ψ0(Ω_2*ω)
E[#]#{E[#]#{#}##}# ≈ ψ0(Ω_2^2)
E[#]#{E[#]#{#}(E[#]#)}# ≈ ψ0(Ω_2^ω)
E[#]#{E[#]#{#}#{#}#}# ≈ ψ0(Ω_2^Ω_2)
E[#]#{E[#]#{##}#}# ≈ ψ0(Ω_2^(Ω_2*ω))
E[#]#{E[#]#{E[#]#}#}# ≈ ψ0(Ω_2^Ω_2^ω)
E[#]#{E[#]#{E[#]#{#}#}#}# ≈ ψ0(Ω_3)
E[#]#{E[#]#{E[#]#{E[#]#{#}#}#}#}# ≈ ψ0(Ω_4)
Therefore, the growth rate of this is ψ0(Ω_ω), also known as the Buchholz's Ordinal.
xE+ introduces a new character called the slash (/). Once again, it's just a few new fundamental sequences.
/[1] --> Delete the slash, the [1] and the following entry.
/[n+1] = (E[#]#{/[n]}#)
This is also what I call the beginning of the slash era, at the end of the hyperion era (E# to the end of E+)
Examples:
E2/4
= E2/[4]2
= E2(E[#]#{/[3]}#)2
= E2(E[#]#{E[#]#{/[2]}#}#)2
= E2(E[#]#{E[#]#{E[#]#{/[1]}#}#}#)2
= E2(E[#]#{E[#]#{E[#]#}#}#)2
E3/*#2
= E3/3/*#1
= E3/3
= E3/[3]3
= E3(E[#]#{/[2]}#)3
= E3(E[#]#{E[#]#{/[1]}#}#)3
= E3(E[#]#{E[#]#}#)3
E3/*/4
= E3(/*/)[4]3
= E3/*(/[4])3
= E3/*(E[#]#{/[3]}#)3
= E3/*(E[#]#{E[#]#{/[2]}#}#)3
= E3/*(E[#]#{E[#]#{E[#]#{/[1]}#}#}#)3
= E3/*(E[#]#{E[#]#{E[#]#}#}#)3
Let's keep going, but with a new term.
Entry: A set of delimiters that can be separated by +'s and can be added a number on
-- Successor entry: An entry that is a number or has a number > 0 added on it
-- Limit entry: An entry that is not a successor entry
/_(A+1)[1] = /_(A) where A is the rest of the subscript
/_(A+1)[n+1] = E[/_(A)]/_(A){/_(A+1)[n]}/_(A)
/_(A)[n] = /_(A[n]) if A is a limit entry
A*#[n] = A+A+A+...+A+A+A with n A's, if A*# is in an entry
(A_1+A_2+A_3+...+A_k)[n] = A_1+A_2+A_3+...+((A_k)[n]) if A_k is a delimiter
Examples:
E3/_(3)2
= E3/_(3)[2]3
= E3(E[/_(2)]/_(2){/_(3)[1]}/_(2))3
= E3(E[/_(2)]/_(2){/_(2)}/_(2))3
= E3(E[/_(2)]/_(2){/_(2)}/_(2))[3]3
= E3(E[/_(2)]/_(2){/_(2)}(/_(2)[3]))3
Here's another era! The slash era begins at xE+, and ends at the end of #xE+. (So yeah, it's really short.)
Arraying-E Notation (E,)
It's not too complicated though, let's just get to it.
[A] = A
#_1 = /
#_(A) = /_(A)
A_0 = A
[~<A>0<B>~~] = [~<B>~~] if A < B, where ~ is the rest of the array and concatenated multiple symbols mean variants
[~<A>0] = [~]
A_(B+1)[1] = A_(B) where, once again, B is some delimiter
A_(B+1)[n+1] = E[A_(B)]A_(B){A_(B+1)[n]}A_(B)
A_(B)[n] = A_(B[n]) if B is a limit entry
[#,A+1,~][1] = [#,A,~]
[#,A+1,~][n+1] = [#,A,~]_([#,A+1,~][n])
[#,¨,A,~][n] = [#,¨,A[n],~] if A is a limit entry, where ¨ is an empty string or a string with one or more separator-separated 0s
[#,¨,A+1,~][1] = [#,¨,A,~]
[#,¨,0,A+1,~][n+1] = [#,¨,[#,¨,0,A+1,~][n],A,~]
[#<n>k~] = [#,0,0,0,...,0,0,0,k~] with n 0's
[#~<~~>0] = [#~]
[#<~~>k+1~][1] = [#<~~>k~]
[#<~~+1>k+1~][n+1] = [#<~~>[#<~~+1>k+1~][n]<~~+1>k~]
[#<~~>k+1~][n] = [#<~~[n]>1<~~>k~] if ~~ is a limit entry
Tip: If an array has <>s, it is not allowed to have commas. So here's a new rule:
[#~~~~<~~~>0<~~>~] = [#~~~~<~~~+~~>~] if ~~~ ≥ ~~
Ordinal Operator Notation (OON)
Ordinal Operator Notation (OON) is a notation that is in the form a{A}b where a and b are positive integers, and A is the ordinal. No need to talk too much; here are the rules:
Rule 1: a{1}b = a^b
Rule 2: a{A}1 = a
Rule 3: a{A+1}(b+1) = a{A}a{A+1}b
Rule 4: a{A}b = a{A[b]}a if A is a limit ordinal
However, this notation, like the Fast-growing, Hardy, and Slow-growing hierarchy, is ill-defined unless a specific choice of a system of fundamental sequences is explicitly fixed in the context.
But I got some systems of fundamental sequences to use.
ω[n] = n
(β+α)[n] = β+α[n]
(β^(α+1))[n] = β^α*(β[n])
α(β+1)[n] = αβ+(α[n])
(β^α)[n] = β^(α[n]) if α is a limit ordinal
(β*α)[n] = β*(α[n]) if α is a limit ordinal
ε0[0] = 0
ε0[n+1] = ω^(ε0[n])
This one is my extension on the Wainer Hierarchy.
εα[0] = 1 if α > 0
ε(α+1)[n+1] = εα^(ε(α+1))[n]
εα[n] = ε(α[n]) if α is a limit ordinal
ζ0[0] = 0
ζα[n+1] = ε(ζα[n])
ζ(α+1)[0] = ζα+1
ζα[n] = ζ(α[n]) if α is a limit ordinal
η0[0] = 0
ηα[n+1] = ζ(ηα[n])
η(α+1)[0] = ηα+1
ηα[n] = η(α[n]) if α is a limit ordinal
It has everything in the wainer hierarchy, plus these:
φα(0)[0] = 0
φ(β+1)(α)[n+1] = φβ(φ(β+1)(α)[n])
φβ(α+1)[0] = φβ(α)+1
φβ(α)[n] = φβ(α[n]) if α is a limit ordinal
φβ(α+1)[n] = φ(β[n])(φβ(α)+1) if β is a limit ordinal
φβ(0)[n] = φ(β[n])(0) if β is a limit ordinal
It has everything in the veblen hierarchy, plus these:
Tip: φβ(α) = φ(β, α)
Another tip: εα = φ(1, α)
Another tip: ζα = φ(2, α)
Another tip: ηα = φ(3, α)
Another tip: Γα = φ(1, 0, α)
Let z be an empty string or a string with one or more zeroes separated by commas ("0, 0, 0, ..., 0, 0, 0") and s be an empty string or a string with one or more ordinals separated by commas ("a_1, a_2, a_3, ..., a_(k-2), a_(k-1), a_k") where a_1 > 0
φ(z, s, α) = φ(s, α)
φ(α) = ω^α
φ(s, 0)[0] = 0
φ(s, β+1, 0, z)[n+1] = φ(s, β, φ(s, β+1, 0, z)[n], z)
φ(s, β, z)[n] = φ(s, β[n], z) if β is a limit ordinal
φ(s, β, 0, z, α+1)[n] = φ(s, β[n], φ(s, β, 0, z, α)+1, z, 0) if β is a limit ordinal
φ(s, β+1, α+1)[n+1] = φ(s, β, φ(s, β+1, α+1)[n])
φ(s, β, α+1)[n] = φ(s, β[n], φ(s, β, α)+1) if β is a limit ordinal
φ(s, α+1)[0] = φ(s, α)+1
This one will involve off of Buchholz's ψ function. It has everything in the wainer hierarchy, plus these:
We've gotten through so many hierarchies, so let's give examples of this notation.
Also, remember that I do not own any of these hierarchies (except the extension for the Wainer Hierarchy). I just put them here so that you can understand them.
3{φ(1, 2, ω, 0, 0)}3 = 3{φ(1, 2, ω, 0, 0)[3]}3 = 3{φ(1, 2, ω[3], 0, 0)}3 = 3{φ(1, 2, 3, 0, 0)}3
3{ε1+1}5 = 3{ε1}3{ε1+1}4 = 3{ε1}3{ε1}3{ε1+1}3 = 3{ε1}3{ε1}3{ε1}3{ε1+1}2 = 3{ε1}3{ε1}3{ε1}3{ε1}3{ε1+1}1 = 3{ε1}3{ε1}3{ε1}3{ε1}3 = 3{ε1}3{ε1}3{ε1}3{ε1}3 = 3{ε1}3{ε1}3{ε1}3{ε1[3]}3 = 3{ε1}3{ε1}3{ε1}3{ε0^ε1[2]}3 = 3{ε1}3{ε1}3{ε1}3{ε0^ε0^ε1[1]}3 = 3{ε1}3{ε1}3{ε1}3{ε0^ε0^ε0^ε1[0]}3 = 3{ε1}3{ε1}3{ε1}3{ε0^ε0^ε0^1}3 = 3{ε1}3{ε1}3{ε1}3{ε0^ε0^ε0}3
This one is very irregular because the only reason this exists is that I want to make extremely big finite numbers.
This will probably be my last component of ExE (Hence the "higher"), but It'll be extremely strong.
It does not have a full definition. Therefore, it's ill-defined.
These are not even guaranteed and are just prototypes.
But here are some tips:
En[\2]m = En/_(/_(/_(.../_(/_(/))...)))n with m /'s
En[\3]m = En[\2]_([\2]_([\2]_(...[/2]_([/2]_([/2]))...)))n with m [/2]'s
En[\#]m = En[\m]n
En[\(#+1)]m = En[\#]_([\#]_([\#]_(...[\#]_([\#]_([\#]))...)))n with m [\#]'s.
En[\(#+#)]m = En[\(#+m)]n
En[\##]m = En[\(#+#+#+...+#+#+#)]n with m #'s
En[\/]m = En[\(E[#]#[\/](m-1))]n
En[\[\2]]m = En[\(/_(/_(/_(.../_(/_(/))...))))]n with m /'s
En[\\]m = En[\[\[\...[\[\[\/]]]...]]]n with m []'s
En[\\\]m = En[\\[\\[\\...[\\[\\[\\]]]...]]]n with m \\'s
En[[\_(2)2]]m = En[\\\...\\\]n with m \'s
En[[\_(2)3]]m = En[[\_(2)2][\_(2)2][\_(2)2]...[\_(2)2][\_(2)2][\_(2)2]]n with m [\_(2)2]'s
En[[\_(2)\]]m = En[[\_(2)[[\_(2)[[\_(2)...[[\_(2)[[\_(2)[[\_(2)]]]]]]...]]]]]]n with m [[\_(2)]]'s
En[[\_(2)\_(2)]]m = En[[\_(2)[\_(2)[\_(2)...[\_(2)[\_(2)[\_(2)]]]...]]]]n with m [\_(2)]'s
En[[[\_(3)2]]]m = En[[\_(2)\_(2)\_(2)...\_(2)\_(2)\_(2)]]n with m \_(2)'s
En[\_(#)]m = En[[[...[[[\_(m)2]]]...]]]n with m []'s
En[\_(#+#)]m = En[[[...[[[\_(#+m)]]]...]]]n with m+1 []'s
En[\_(\)]m = En[\_([\_([\_(...[\_([\_([\/])])]...)])])]n with m []'s
Limit of E.: En[\_(\_(\_(...\_(\_(\/))...)))]m
Looking at these, E. seems pretty definable. So, let's calculate its growth rate.
Tip: [\1] = /
En[\2]n = ψ(ψI(0))
En[\2]n#n = ψ(ψI(0))+1
En[\2]#n = ψ(ψI(0)+1)
En[\2]#^#n = ψ(ψI(0)+ω)
En[\2]/n = ψ(ψI(0)+Ω_ω)
En[\2][\2]n = ψ(ψI(0)2)
En(E[[\2]]#)n = ψ(ψI(0)ω)
En([\2]_2)n = ψ(Ω_(ψI(0)+ω))
En([\2]_3)n = ψ(Ω_(ψI(0)+ω2))
En[\3]n = ψ(ψI(1))
En[\#]n = ψ(ψI(ω))
En[\/]n = ψ(I)
En[\/]#n = ψ(I+1)
En[\/](#^#)n = ψ(I+ω)
Let & and $ be the unchanged remainders of the operator. (Which may or may not be distinct.)
Let % be a } or a string with just 1's separated by }'s, with extra }'s at both ends.
Rule 1: If it's a {1}, a{1}b = a^b
Rule 2: If b = 1, a&1 = a
Rule 3: If the innermost number is a 1: a&{1}$b = a&$b
Rule 4: If the outermost number in the operator is a 1: a&{c}1%b = a&{c-1}(a&{c}1&(b-1))%a where all 1's in the outer % are replaced with a
Rule 5: Otherwise: a{&c}b = a{&(c-1)}a{&c}(b-1)
3{{2}1}5 = 3{{1}3{{2}1}4}3 = 3{3{{2}1}4}3 = 3{3{{1}3{{2}1}3}3}3 = 3{3{3{{2}1}3}3}3 = 3{3{3{{1}3{{2}1}2}3}3}3 = 3{3{3{3{{2}1}2}3}3}3 = 3{3{3{3{{1}3{{2}1}1}3}3}3}3 = 3{3{3{3{3{{2}1}1}3}3}3}3 = 3{3{3{3{3}3}3}3}3 = {3, 5, 1, 2}
3{{{3}1}1}2 = 3{{{2}3{{{3}1}1}1}3}3 = 3{{{2}3}3}3 = 3{{{2}3}2}3{{{2}3}3}2 = 3{{{2}3}2}3{{{2}3}2}3{{{2}3}3}1 = 3{{{2}3}2}3{{{2}3}2}3 = 3{{{2}3}2}3{{{2}3}1}3{{{2}3}2}2 = 3{{{2}3}2}3{{{2}3}1}3{{{2}3}1}3{{{2}3}2}1 = 3{{{2}3}2}3{{{2}3}1}3{{{2}3}1}3 = ... = {3, 2, 1, 1, 3}
n{1}n = f_2(n)
n{2}n = f_3(n)
n{n}n = f_ω(n)
n{{2}1}n = f_ω+1(n)
n{{2}2}n = f_ω+2(n)
n{{2}n}n = f_ω2(n)
n{{3}n}n = f_ω3(n)
n{{n}n}n = f_ω^2(n)
n{{{2}n}n}n = f_ω^2*2(n)
n{{{n}n}n}n = f_ω^3(n)
n{{{...{{{n}n}n}...n}n}n}n with n {}'s = f_ω^ω(n)
So it has the growth rate of a linear array in BEAF.
a{1(1)c}b = a{{{{...{{{a}a}a}...a}a}a}a(1)c-1}a with b a's in total
I featured this in my old googology series, but it was ill-defined because I did not declare the domains of n and m. But I want to give it another try.
Rule 1: Without any slashes: aCb = a*b where a and b are positive integers
Rule 2: Last entry is 1: #/1 = # where # is the rest of the expression
Rule 3: The number before C is 1: 1C# = 1
Rule 4: First entry after C is >1: aCb/# = (a*b)C1/#
Rule 5: Otherwise, aC$/1/d/# = aC$/((a-1)C$1/d/#)/(d-1)/# where $ is a bunch of 1's separated by slashes, and the 1's in the outer one become a (also, d is a positive integer too, and has to be greater than 1)
3C1/3 = 3C(2C1/3)/2 = 3C(2C(1C1/3)/2)/2 = 3C(2C1/2)/2 = 3C(2C(1C1/2)/1)/2 = 3C(2C(1C1/2))/2 = 3C(2C1)/2 = 3C2/2 = (3*2)C1/2 = 6C1/2 = 6C(5C1/2) = ... = 6C(5C(4C(3C(2C(1C1/2))))) = 6C(5C(4C(3C(2C1)))) = 6C(5C(4C(3C2))) = ... = 720 = 6!
Fact learned: nC1/2 = n!
4C1/3 = 4C(3C1/3)/2 = ... (See above) ... = 4C720/2 = 2880C1/2 = ... (See the "fact learned" above) ... = 2880!
5C1/3 = 5C(4C1/3)/2 = ... (See above) ... = 5C(2880!)/2 = (2880!*5)C1/2 = ... (See the "fact learned" above) = (2880!*5)!
3C1/1/2 = 3C3/(2C1/1/2)/1 = 3C3/(2C2/(1C1/1/2)/1)/1 = 3C3/(2C2/(1C1/1/2)/1) = 3C3/(2C2/(1C1/1/2)) = 3C3/(2C2/(1C1/1/2)) = 3C3/(2C2/1) = 3C3/(2C2) = 3C3/4 = 9C1/4 = ...
aCa ≈ f_1(a)
aC1/2 ≈ f_2(a)
aCa/2 ≈ f_2(f_1(a))
aC(aCa/2)/2 ≈ f_2(f_2(f_1(a)))
aC1/3 ≈ f_3(a)
aC1/4 ≈ f_4(a)
aC1/a ≈ f_ω(a)
aC1/1/2 ≈ f_ω+1(a)
aC1/2/2 ≈ f_ω+2(a)
aC1/a/2 ≈ f_ω2(a)
aC1/1/3 ≈ f_ω2+1(a)
aC1/a/a ≈ f_ω^2(a)
aC1/1/1/2 ≈ f_ω^2+1(a)
aC1/a/1/2 ≈ f_ω^2+ω(a)
aC1/a/2/2 ≈ f_ω^2+ω2(a)
aC1/a/a/2 ≈ f_ω^2*2(a)
aC1/a/a/3 ≈ f_ω^2*3(a)
aC1/a/a/a ≈ f_ω^3(a)
aC1/a/a/a/a ≈ f_ω^4(a)
aC1/a/a/a/.../a/a/a ≈ f_ω^ω(a) (The limit of linear C function)
This extension uses multiple slashes between numbers. It's rules are:
Rule 1: Without any slashes: aCb = a*b
Rule 2: Last entry is 1: #1 = #
Rule 3: The number before C is 1: 1C# = 1
Rule 4: First entry after C is >1: aCb/# = (a*b)C1/#
Rule 5: If x < y: aC#1(/^x)1(/^y)#_2 = aC#1(/^y)#_2 where (/^k) is ///.../// with k /'s
Rule 6: First >1 entry comes right after multiple slashes: aC$(/^x)b# = aC$(/^(x-1))1(/^(x-1))1...1(/^(x-1))1(/^(x-1))2(/^x)b-1# with a (/^(x-1))'s
Rule 7: Otherwise, aC$/1/d/# = aC$/((a-1)C$1/d/#)/(d-1)/# where all the 1's in $ are replaced with a's
3C1//2 = 3C1/1/1/2//1 = 3C1/1/1/2 = 3C3/3/(2C1/1/1/2)/1 = 3C3/3/(2C1/1/1/2) = 3C3/3/(2C2/2/(1C1/1/1/2)/1) = 3C3/3/(2C2/2/1/1) = 3C3/3/(2C2/2) = 3C3/3/(4C1/2) = 3C3/3/4! = 3C3/3/24 = ...
3C1///2////4 = 3C1//1//1//2///1////4 = 3C1//1//1//2////4 = 3C1//1//1/1/1/2//1////4 = 3C1//1//1/1/1/2////4 = ...
nC1//2 ≈ f_ω^ω(n)
nCn//2 ≈ f_ω^ω(f_1(n))
nC1/2//2 ≈ f_ω^ω+1(n)
nC1/n//2 ≈ f_ω^ω+ω(n)
nC1/n/n//2 ≈ f_ω^ω+ω^2(n)
nC1//3 ≈ f_ω^ω*2(n)
nC1//n ≈ f_ω^(ω+1)(n)
nC1//1/2 ≈ f_ω^(ω+1)+1(n)
nC1//n/2 ≈ f_ω^(ω+1)*2(n)
nC1//n/n ≈ f_ω^(ω+2)(n)
nC1//1//2 ≈ f_ω^ω2(n)
nC1///2 ≈ f_ω^ω^2(n)
nC1////2 ≈ f_ω^ω^3(n)
nC1/////.../////2 ≈ f_ω^ω^ω(n) (Limit of this extension)
Similarly to ExE, this "chain" notation is made of a couple of components (1 for now)
Hyper-X Notation
Here are the rules for a,b#A. Also, all lowercase variables refer to positive integers, and all UPPERCASE variables refer to an X-structure.
Base rule: With a 1 after #: a,b#1 = a^b
Prime rule: If the prime is 1: a,1#A = a
Recursion rule: If A is a successor structure: a,b#A = a,(a,(b-1)#A)#(A-1)
Catastrophic rule: Otherwise: a,b#A = a,a#(A[b])
Fundamental sequences
X[n] = n
(A+B)[n] = A+(B[n])
(A*(m+1))[n] = A*m+(A[n])
(A*B)[n] = A*(B[n]) if B is a limit structure
A^(B+1)[n] = A^B*(A[n])
(A^B)[n] = A^(B[n]) if B is a limit structure
(B,X#A)[n] = B,n#A
(B,D*X^(C+1)#A)[n] = (B,D*X^C#A)>(B,D*X^C#A)>(B,D*X^C#A)>...>(B,D*X^C#A)>(B,D*X^C#A)>(B,D*X^C#A) if A>1
A>1 = A
(A,C#D)>(B*X)[n] = (((...(((A,C#D)>B,C#D)>B,C#D)>B,C#D...)>B,C#D)>B,C#D)>B with n ",C#D"s, if D>1
((A,C#D)>B)[n] = (A,C#D)>(B[n]) if B does not end in "*X^k" and D>1
A,B#1 = A^B
(A>B)[n] = A>(B[n])
Examples
3,4#X = 3,3#4 = 3,(3,2#4)#3 = 3,(3,3#3)#3 = ... = 3^^^^3 = 3^^^tritri
3,4#(X,X#X) = 3,3#(X,X#X)[4] = 3,3#(X,4#X) = 3,3#(X,X#4) = 3,3#(X,3#4) = 3,3#(X,(X,2#4)#3) = 3,3#(X,(X,(X,1#4)#3)#3) = 3,3#(X,(X,X#3)#3) = 3,3#(X,(X,X#3)#3)[3] = 3,3#(X,(X,X#3)[3]#3) = 3,3#(X,(X,3#3)#3) = 3,3#(X,(X,(X,2#3)#2)#3) = 3,3#(X,(X,(X,(X,1#3)#2)#2)#3) = 3,3#(X,(X,(X,X#2)#2)#3) = ... = 3,3#(X,(X,(X,(X,X#1)#1)#2)#3) = 3,3#(X,(X,(X,X^X#1)#2)#3) = 3,3#(X,(X,X^X^X#2)#3) = 3,3#(X,(X,X^X^3#2)#3) = 3,3#(X,(X,X^(X^2*3)#2)#3) = 3,3#(X,(X,X^(X^2*2+X*3)#2)#3) = 3,3#(X,(X,X^(X^2*2+X*2+3)#2)#3) = 3,3#(X,(X,X^(X^2*2+X*2+2)*3#2)#3) = 3,3#(X,(X,X^(X^2*2+X*2+2)*2+X^(X^2*2+X*2+1)*3#2)#3) = ...
2,4#(X,X^2#2) = 2,2#(X,X#2)>(X,X#2)>(X,X#2)>(X,X#2) = 2,2#(X,X#2)>(X,X#2)>(X,X#2)>(X,2#2) = 2,2#(X,X#2)>(X,X#2)>(X,X#2)>(X,X#1) = 2,2#(X,X#2)>(X,X#2)>(X,X#2)>X^X = 2,2#(X,X#2)>(X,X#2)>(X,X#2)>X^2 = 2,2#(X,X#2)>(X,X#2)>((X,X#2)>X,X#2)>X = 2,2#(X,X#2)>(X,X#2)>((X,X#2)>X,X#2)>X
Growth Rate
The growth rate of this notation is f_ψ(Ω_ω) in the fast-growing hierarchy.
This is a hierarchy in the form S_α(n), where n is some number, α is the ordinal and _ means subscript.
Works like this:
S_0(n) = 1
S_α+1(n+1) = S_α(n+1)+S_α+1(n) (Base case: S_α(1) = 1)
S_α(n) = S_α[n](n) if α is a limit ordinal
For the systems of fundamental sequences, see Ordinal Operator Notation.
Examples
S_3(4) = S_2(4)+S_3(3) = S_2(4)+S_2(3)+S_3(2) = S_2(4)+S_2(3)+S_2(2)+S_3(1) = S_2(4)+S_2(3)+S_2(2)+1 = S_2(4)+S_2(3)+S_1(2)+S_2(1)+1 = S_2(4)+S_2(3)+S_1(2)+1+1 = S_2(4)+S_2(3)+S_1(2)+2 = S_2(4)+S_2(3)+S_0(2)+S_1(1)+2 = S_2(4)+S_2(3)+S_0(2)+1+2 = S_2(4)+S_2(3)+S_0(2)+3 = S_2(4)+S_2(3)+1+3 = S_2(4)+S_2(3)+4
S_ω^2*2(3) = S_ω^2+ω3(3) = S_ω^2+ω2+3(3) = S_ω^2+ω2+3(3)
Conversions
S_1(n) = n = n/1
S_2(n) = (n(n+1))/2
S_3(n) = (n(n+1)(n+2))/6
S_4(n) = (n(n+1)(n+2)(n+3))/24
In short, S_b(a) = (a(a+1)(a+2)...(a+b-3)(a+b-2)(a+b-1))/b!
Now let's extend some notations because... why not.
My extension for this notation is called "Slashing multi-nested hyper-exploding pound-star notation" (/H#*<<>> for short) and has the following rules.
An expression consists of one or more entries separated by groups consisting of one or more items, each of which may be either a star character (*), a carat (^), an explodon array (denoted as a colon-separated list of nonnegative integers of which at least one must be positive, wrapped in curly brackets), an at sign (@), a nested group (denoted as any valid separator group -even one containing other nesting groups or supernests- wrapped in angle brackets), a supernest (denoted as either a nonnegative integer or any valid separator group in square brackets, or an empty pair of square brackets) or a slash array (denoted as an apostrophe-separated list of nonnegative integers of which at least one must be positive, with a slash on the very left, wrapped in paranthesis). The first entry must be a pound sign (#). Subsequent entries may be either a pound sign, a single positive integer, an ordered comma-separated set of one or more nonnegative integers, of which at least one must be positive, wrapped in a single set of parentheses; or a "proto-set" denoted as a single positive integer wrapped in two pairs of parentheses.
Start with n=1.
If the final separator group is anything other than a single *:
If the final item in the group is a slash array:
If it only has one entry, and it's a 0, replace that slash array with n pairs of square brackets.
If the last entry in the slash array is a 0, remove it and multiply n by itself.
If the first entry is a 0, replace the first nonzero entry with n, and decrease the entry after that by 1.
Otherwise, replace the slash array with n copies of with having their first entry decreased by 1.
If the final item in the group is a supernest:
If it is empty, put the current value of n in it.
If it contains the number 0, replace it with an at sign.
If it contains any other number, decrement the number by one and wrap the supernest in n layers of nesting groups.
If it contains a separator group:
If the last item in the supernest is a star character, remove it and wrap the supernest in n layers of nesting groups.
Otherwise, reduce it as you would a normal separator group.
If the final item in the group is any nesting group, replace it with n concatenated copies of whatever subgroup it contains.
If the final item in the group is an at sign, replace it with an explodon array of n terms, of which the last term is 1 and all preceding terms are 0.
If the final item in the group is an explodon array:
If there are two or more terms, of which the last is 0, remove the last term.
Else, if the first term is 0:
If that is the only term, replace that explodon array with a carat.
Else, decrement the first nonzero term by one and set all earlier terms to n.
Else, replace that explodon array with n identical explodon arrays that have had the first term decremented by 1.
If the final character in the group is a carat, replace it with n stars.
If the final character in the group is a star, replace the final entry with a series of n identical entries whose separator groups have had the final star removed.
Else:
If the last entry is a number, multiply n by this number, then remove it from the expression.
If the last entry is a pound sign, replace it with the current n.
If the last entry is a proto-set ((x)), replace it with a set of n elements, each equal to x.
If the last entry is a set:
If the set contains only one element, replace the set with that number raised to the power of the current n.
Otherwise, if the final element is 0, remove it and increment n by 1.
Otherwise, decrement the final element by 1 and increment the preceding element by n.
Repeat rules 2-3 until the expression is reduced to a single number. This is the value of the expression.
#*3*5 (n=1)
=#*3 (n=5)
=# (n=15)
=15
#**4*5 (n=1)
=#**4 (n=5)
=#*4*4*4*4*4 (n=5)
=#*4*4*4*4 (n=20)
=#*4*4*4 (n=80)
=#*4*4 (n=320)
=#*4 (n=1280)
=# (n=5120)
=5120
#{0:0:1}2*3
=#{0:0:1}2 (n=3)
=#{3:3:0}2 (n=3)
=#{3:3}2 (n=3)
=#{2:3}{2:3}{2:3}2 (n=3)
=#{2:3}{2:3}{1:3}{1:3}{1:3}2 (n=3)
=#{2:3}{2:3}{1:3}{1:3}{0:3}{0:3}{0:3}2 (n=3)
=...
#[@]2*5
=#[@]2 (n=5)
=#[{0:0:0:0:1}]2 (n=5)
=#[{5:5:5:5}]2 (n=5)
=...
#(/0'0'1)4*6
=#(/0'0'1)4 (n=6)
=#(/0'6'0)4 (n=6)
=#(/0'6)4 (n=36)
=#(/36'5)4 (n=36)
=#(/35'5)(/35'5)(/35'5)...(/35'5)(/35'5)(/35'5)4 (n=36)
Now here's another extension called "Proto-slashing multi-nested hyper-exploding pound-star notation" (<>/H#*<<>>):
An expression consists of one or more entries separated by groups consisting of one or more items, each of which may be either a star character (*), a carat (^), an explodon array (denoted as a colon-separated list of nonnegative integers, of which at least one must be positive, wrapped in curly brackets), an at sign (@), a nested group (denoted as any valid separator group -even one containing other nesting groups or supernests- wrapped in angle brackets), a supernest (denoted as either a nonnegative integer or any valid separator group in square brackets, or an empty pair of square brackets) or a slash array (denoted as an apostrophe-separated list of nonnegative integers, optionally wrapped in any amount of parentheses; with a slash on the very left, wrapped in parenthesis / also sub-arrays can be consecutive but cannot be separated by apostrophes). The first entry must be a pound sign (#). Subsequent entries may be either a pound sign, a single positive integer, an ordered comma-separated set of one or more nonnegative integers, of which at least one must be positive, wrapped in a single set of parentheses, or a "proto-set" denoted as a single positive integer wrapped in two pairs of parentheses.
Start with n=1.
If the final separator group is anything other than a single *:
If the final item in the group is a slash array:
Go to the rightmost array that doesn't have another array in it.
If it only has one entry, and it's a 0:
If it's the only array in its parent, replace that array with n entries (last one has a 1, all others have 0's).
If it starts with a slash, replace that slash array with n pairs of square brackets.
Otherwise, replace its parent with n consecutive copies of its parent having this array deleted.
If the last entry in the slash array is a 0, remove it and multiply n by itself.
If the first entry is a 0, replace the first nonzero entry with n, and decrease the entry after that by 1.
Otherwise, replace the slash array with n copies of it, with having their first entry decreased by 1.
If the final item in the group is a supernest:
If it is empty, put the current value of n in it.
If it contains the number 0, replace it with an at sign.
If it contains any other number, decrement the number by one and wrap the supernest in n layers of nesting groups.
If it contains a separator group:
If the last item in the supernest is a star character, remove it and wrap the supernest in n layers of nesting groups.
Otherwise, reduce it as you would a normal separator group.
If the final item in the group is any nesting group, replace it with n concatenated copies of whatever subgroup it contains.
If the final item in the group is an at sign, replace it with an explodon array of n terms, of which the last term is 1 and all preceding terms are 0.
If the final item in the group is an explodon array:
If there are two or more terms, of which the last is 0, remove the last term.
Else, if the first term is 0:
If that is the only term, replace that explodon array with a carat.
Else, decrement the first nonzero term by one and set all earlier terms to n.
Else, replace that explodon array with n identical explodon arrays that have had the first term decremented by 1.
If the final character in the group is a carat, replace it with n stars.
If the final character in the group is a star, replace the final entry with a series of n identical entries whose separator groups have had the final star removed.
Else:
If the last entry is a number, multiply n by this number, then remove it from the expression.
If the last entry is a pound sign, replace it with the current n.
If the last entry is a proto-set ((x)), replace it with a set of n elements, each equal to x.
If the last entry is a set:
If the set contains only one element, replace the set with that number raised to the power of the current n.
Otherwise, if the final element is 0, remove it and increment n by 1.
Otherwise, decrement the final element by 1 and increment the preceding element by n.
Repeat the last two rules until the expression is reduced to a single number. This is the value of the expression.
#(/((5)))2*4
=#(/((5)))2 (n=4)
=#(/((4)(4)(4)(4)))2 (n=4)
=#(/((4)(4)(4)(3)(3)(3)(3)))2 (n=4)
=#(/((4)(4)(4)(3)(3)(3)(2)(2)(2)(2)))2 (n=4)
=#(/((4)(4)(4)(3)(3)(3)(2)(2)(2)(1)(1)(1)(1)))2 (n=4)
=#(/((4)(4)(4)(3)(3)(3)(2)(2)(2)(1)(1)(1)(0)(0)(0)(0)))2 (n=4)
=#(/((4)(4)(4)(3)(3)(3)(2)(2)(2)(1)(1)(1)(0)(0)(0))((4)(4)(4)(3)(3)(3)(2)(2)(2)(1)(1)(1)(0)(0)(0))((4)(4)(4)(3)(3)(3)(2)(2)(2)(1)(1)(1)(0)(0)(0)))2 (n=4)
=...
#(/(((0))))3*9
=#(/(((0))))3 (n=9)
=#(/((0'0'0'0'0'0'0'0'1)))3 (n=9)
=#(/((0'0'0'0'0'0'0'9'0)))3 (n=9)
=#(/((0'0'0'0'0'0'0'9)))3 (n=81)
=#(/((0'0'0'0'0'0'81'8)))3 (n=81)
=...
=#(/((81'80'80'80'80'80'80'8)))3 (n=81)
=...
#(/((5))(0))2*4
=#(/((5))(0))2 (n=4)
=#(/((5)))(/((5)))(/((5)))(/((5)))2 (n=4)
=#(/((5)))(/((5)))(/((5)))(/((4)(4)(4)(4)))2 (n=4)
=...
Another extension! (Nested Proto-slashing multi-nested hyper-exploding pound-star notation, <<>>/H#*<<>>):
An expression consists of one or more entries separated by groups consisting of one or more items, each of which may be either a star character (*), a carat (^), an explodon array (denoted as a colon-separated list of nonnegative integers, of which at least one must be positive, wrapped in curly brackets), an at sign (@), a nested group (denoted as any valid separator group -even one containing other nesting groups or supernests- wrapped in angle brackets), a supernest (denoted as either a nonnegative integer or any valid separator group in square brackets, or an empty pair of square brackets) or a slash array (denoted as an apostrophe-separated list of nonnegative integers, optionally wrapped in any amount of parentheses, optionally with a slash on the very left; with a slash on the very left, wrapped in parenthesis / also sub-arrays can be consecutive but cannot be separated by apostrophes). The first entry must be a pound sign (#). Subsequent entries may be either a pound sign, a single positive integer, an ordered comma-separated set of one or more nonnegative integers, of which at least one must be positive, wrapped in a single set of parentheses, or a "proto-set" denoted as a single positive integer wrapped in two pairs of parentheses.
Start with n=1.
If the final separator group is anything other than a single *:
If the final item in the group is a slash array:
Go to the rightmost array that doesn't have another array in it.
If it only has one entry, and it's a 0:
If it's the only array in its parent, replace that array with n entries (last one has a 1, all others have 0's).
If it starts with a slash:
If it's not in another slash array, replace that slash array with n pairs of square brackets.
Otherwise, replace that slash array with n pairs of paranthesis.
Otherwise, replace its parent with n consecutive copies of its parent having this array deleted.
If the last entry in the slash array is a 0, remove it and multiply n by itself.
If the first entry is a 0, replace the first nonzero entry with n, and decrease the entry after that by 1.
Otherwise, replace the slash array with n copies of it, with having their first entry decreased by 1.
If the final item in the group is a supernest:
If it is empty, put the current value of n in it.
If it contains the number 0, replace it with an at sign.
If it contains any other number, decrement the number by one and wrap the supernest in n layers of nesting groups.
If it contains a separator group:
If the last item in the supernest is a star character, remove it and wrap the supernest in n layers of nesting groups.
Otherwise, reduce it as you would a normal separator group.
If the final item in the group is any nesting group, replace it with n concatenated copies of whatever subgroup it contains.
If the final item in the group is an at sign, replace it with an explodon array of n terms, of which the last term is 1 and all preceding terms are 0.
If the final item in the group is an explodon array:
If there are two or more terms, of which the last is 0, remove the last term.
Else, if the first term is 0:
If that is the only term, replace that explodon array with a carat.
Else, decrement the first nonzero term by one and set all earlier terms to n.
Else, replace that explodon array with n identical explodon arrays that have had the first term decremented by 1.
If the final character in the group is a carat, replace it with n stars.
If the final character in the group is a star, replace the final entry with a series of n identical entries whose separator groups have had the final star removed.
Else:
If the last entry is a number, multiply n by this number, then remove it from the expression.
If the last entry is a pound sign, replace it with the current n.
If the last entry is a proto-set ((x)), replace it with a set of n elements, each equal to x.
If the last entry is a set:
If the set contains only one element, replace the set with that number raised to the power of the current n.
Otherwise, if the final element is 0, remove it and increment n by 1.
Otherwise, decrement the final element by 1 and increment the preceding element by n.
Repeat the last two rules until the expression is reduced to a single number. This is the value of the expression.
#(/(/0))2*6
=#(/(/0))2 (n=6)
=#(/((((((0)))))))2 (n=6)
=...
This one is more like a review.
#(/(/(/0)))^^2*5
=#(/(/(/0)))^^2 (n=5)
=#(/(/(/0)))^*****2 (n=5)
=#(/(/(/0)))^****2(/(/(/0)))^****2(/(/(/0)))^****2(/(/(/0)))^****2(/(/(/0)))^****2 (n=5)
=...
I made many more extensions, but they're really unnecessary, so let's just skip to Higher-exploding Ampersand-nested Separator-multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star notation ({}&^*x<<>>/H#*<<>>).
Yeah, it's becoming a monstrosity.
An expression consists of one or more entries separated by groups consisting of one or more items, each of which may be either a star character (*), a carat (^), an explodon array (denoted as a colon-separated list of nonnegative integers, of which at least one must be positive, or a separator group; wrapped in curly brackets), an at sign (@), a nested group (denoted as any valid separator group -even one containing other nesting groups or supernests- wrapped in angle brackets), a supernest (denoted as either a nonnegative integer or any valid separator group in square brackets, or an empty pair of square brackets), slash array (denoted as an apostrophe-separated list of nonnegative integers, optionally wrapped in any amount of parentheses, optionally with multiple slashes and/or a separator group on the very left (the separator group comes first); with a slash on the very left, wrapped in parenthesis / also sub-arrays can be consecutive but cannot be separated by apostrophes) or an ampersand (&). The first entry must be a pound sign (#). Subsequent entries may be either a pound sign, a single positive integer, an ordered comma-separated set of one or more nonnegative integers, of which at least one must be positive, wrapped in a single set of parentheses, or a "proto-set" denoted as a single positive integer wrapped in two pairs of parentheses.
Start with n=1.
If the final separator group is anything other than a single star:
If the final item is an ampersand, replace it with n x's followed by a slash and a 0, all wrapped in a pair of parantheses.
If the final item in the group is a slash array:
Go to the rightmost array that doesn't have another array in it.
If it only has one entry, and it's a 0:
If it's the only array in its parent, replace that array with n entries (the last one has a 1; all others have 0s).
If it has a slash:
If it's not in another slash array, it only has one slash, and it does not have anything before the slash; replace that slash array with n pairs of square brackets.
Otherwise:
If it has multiple slashes and something before, or one or more slashes without anything before, delete a slash and get n copies of the remainder nested in the 0.
If there's only one slash and any amount x's, but the separator group ends in a star, delete the star and replace the slash with n slashes.
If it has only one slash, one or more slashes but not a separator group, get n copies of the array nested on the leftmost x.
Otherwise, reduce the separator group before the slashes normally.
Otherwise, replace its parent with n consecutive copies of its parent having this array deleted.
If the last entry in the slash array is a 0, remove it and multiply n by itself.
If the first entry is a 0, replace the first nonzero entry with n, and decrease the entry after that by 1.
Otherwise, replace the slash array with n copies of it, with having their first entry decreased by 1.
If the final item in the group is a supernest:
If it is empty, put the current value of n in it.
If it contains a 0, replace the supernest with an at sign.
If it contains any other number, decrement the number by one and wrap the supernest in n layers of nesting groups.
If it contains a separator group:
If the last item in the supernest is a star character, remove it and wrap the supernest in n layers of nesting groups.
Otherwise, reduce it as you would a normal separator group.
If the final item in the group is any nesting group, replace it with n concatenated copies of whatever subgroup it contains.
If the final item in the group is an at sign, replace it with an explodon array of n terms, of which the last term is 1 and all preceding terms are 0.
If the final item in the group is an explodon array:
If there are two or more terms, of which the last is 0, remove the last term.
If the first term is 0:
If that is the only term, replace that explodon array with a carat.
Otherwise, decrement the first nonzero term by one and set all earlier terms to n.
If there's nothing but a separator group:
If that separator group has only a star, replace the explodon array with an ampersand.
If that separator group has anything but a single star but ends in a star, replace the explodon array n copies of it with the last star removed.
If that separator group has anything else, reduce it normally.
Else, replace that explodon array with n identical explodon arrays that have had the first term decremented by 1.
If the final character in the group is a carat, replace it with n stars.
If the final character in the group is a star, replace the final entry with a series of n identical entries whose separator groups have had the final star removed.
Otherwise:
If the last entry is a number, multiply n by this number, then remove it from the expression.
If the last entry is a pound sign, replace it with the current n.
If the last entry is a proto-set ((x)), replace it with a set of n elements, each equal to x.
If the last entry is a set:
If the set contains only one element, replace the set with that number raised to the power of the current n.
If the final element is 0, remove it and increment n by 1.
Otherwise, decrement the final element by 1 and increment the preceding element by n.
Repeat the last two rules until the expression is reduced to a single number. This is the value of the expression.
#{{{0:1}}}2*3
=#{{{0:1}}}2 (n=3)
=#{{{3}}}2 (n=3)
=#{{{2}{2}{2}}}2 (n=3)
=#{{{2}{2}{1}{1}{1}}}2 (n=3)
=#{{{2}{2}{1}{1}{0}{0}{0}}}2 (n=3)
=#{{{2}{2}{1}{1}{0}{0}^}}2 (n=3)
=#{{{2}{2}{1}{1}{0}{0}***}}2 (n=3)
=#{{{2}{2}{1}{1}{0}{0}**}{{2}{2}{1}{1}{0}{0}**}{{2}{2}{1}{1}{0}{0}**}}2 (n=3)
=...
#{*}2*5
=#{*}2 (n=5)
=#&2 (n=5)
=#(xxxxx/0)2 (n=5)
=#(((((xxxx/0)xxxx/0)xxxx/0)xxxx/0)xxxx/0)2 (n=5)
=#(((((((((xxx/0)xxx/0)xxx/0)xxx/0)xxx/0)xxxx/0)xxxx/0)xxxx/0)xxxx/0)2 (n=5)
=...
Now let's calculate the growth rate! (The ordinals shown on the right x mean f_x(n))
#(/0)n*n ≈ ε0 (Slashing Multi-nested Hyper-exploding Pound-star Notation)
#(/1)n*n ≈ ε0*ω
#(/2)n*n ≈ ε0*ω^2
#(/0'1)n*n ≈ ε0*ω^ω
#(/0'1)n*n ≈ ε0*ω^ω
#(/0'0'1)n*n ≈ ε0*ω^ω^2
#(/(0))n*n ≈ ε0*ω^ω^ω (Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#(/(0)(0))n*n ≈ ε0*ω^(ω^ω+1)
#(/(1))n*n ≈ ε0*ω^(ω^ω+ω)
#(/(2))n*n ≈ ε0*ω^(ω^ω+ω^2)
#(/(0'1))n*n ≈ ε0*ω^(ω^ω*2)
#(/(0'1)(0))n*n ≈ ε0*ω^(ω^ω*2+1)
#(/(0'1)(0'1))n*n ≈ ε0*ω^(ω^ω*3)
#(/(1'1))n*n ≈ ε0*ω^ω^(ω+1)
#(/(2'1))n*n ≈ ε0*ω^ω^(ω+2)
#(/(0'2))n*n ≈ ε0*ω^ω^ω2
#(/(0'0'1))n*n ≈ ε0*ω^ω^ω^2
#(/((0)))n*n ≈ ε0*ω^ω^ω^ω
#(/((0)(0)))n*n ≈ ε0*ω^ω^(ω^ω+1)
#(/((1)))n*n ≈ ε0*ω^ω^(ω^ω+ω)
#(/((0'1)))n*n ≈ ε0*ω^ω^(ω^ω*2)
#(/((0'0'1)))n*n ≈ ε0*ω^ω^ω^(ω^2)
#(/(((0))))n*n ≈ ε0*ω^ω^ω^ω^ω
#(/(((0))))n*n ≈ ε0*ω^ω^ω^ω^ω
#(/(/0))n*n ≈ ε0^2 (Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#(/(/0)(0))n*n ≈ ε0^2*ω
#(/(/0)(/0))n*n ≈ ε0^3
#(/(/1))n*n ≈ ε0^ω
#(/(/2))n*n ≈ ε0^ω^2
#(/(/(0)))n*n ≈ ε0^ω^ω
#(/(/(/0)))n*n ≈ ε0^ε0
#(/(/(/(/0))))n*n ≈ ε0^ε0
#(//0)n*n ≈ ε1 (Multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#(///0)n*n ≈ ε2
#(*/0)n*n ≈ εω (Separator-multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#(**/0)n*n ≈ εω2
#(^/0)n*n ≈ ε(ω^2)
#(^*/0)n*n ≈ ε(ω^2+ω)
#(^^/0)n*n ≈ ε(ω^2*2)
#({1}/0)n*n ≈ ε(ω^3)
#({0:1}/0)n*n ≈ ε(ω^ω)
#({1:1}/0)n*n ≈ ε(ω^(ω+1))
#({0:2}/0)n*n ≈ ε(ω^ω2)
#({0:0:1}/0)n*n ≈ ε(ω^ω^2)
#(@/0)n*n ≈ ε(ω^ω^ω)
#((/0)/0)n*n ≈ εε0
#(x/0)n*n ≈ ζ0 (Nested Separator-multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#(x/1)n*n ≈ ζ0*ω
#(x//0)n*n ≈ ε(ζ0+1)
#(*x/0)n*n ≈ ε(ζ0+ω)
#(xx/0)n*n ≈ ζ1
#&n*n ≈ ζω (Ampersand-nested Separator-multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#{*}n*n ≈ ζω (Higher-exploding Ampersand-nested Separator-multiplying Nested Proto-slashing Multi-nested Hyper-exploding Pound-star Notation)
#{**}n*n ≈ ζω*ω
#{***}n*n ≈ ζω*ω^2
#{{0}}n*n ≈ ζω*ω^ω
#{{1}}n*n ≈ ζω*ω^(ω+1)
#{{0:1}}n*n ≈ ζω*ω^ω2
#{@}n*n ≈ ζω*ω^ω^ω
#{(/0)}n*n ≈ ζω*ε0
#{(x/0)}n*n ≈ ζω^2
#{{(x/0)}}n*n ≈ ζω^ζω
Growth Rate: ε(ζω+1)
I'm just fixing some notations here, nothing too special.
This one is interesting because the creator of this notation didn't define it at all. (They just gave some tips, but that's not enough to define a notation.) Their tips will probably be enough for you to understand the notation, but not for it to be well-defined. Nevermind, enough trash talking, let's get to it.
Fun but useless fact: This definition will be ported directly from my notes.
Disclaimer: If you're reading this and you're the creator of this notation, just remember that this is your notation and I'm not trying to claim it as my own. But please give it a definition, or steal mine if you want XD
But some terms first:
Dimension: A pair of paranthesis with some stuff in it.
n-dimension. A pair of paranthesis with n in it, where n is some nonnegative number.
Dimension sequence: A series of concatenated dimensions that may or may not be distinct.
And some symbols:
◆ is some dimension sequence. It is allowed to be empty as well.
◇ is some dimension.
■ is the unchanged remainder of a dimension.
□ is the unchanged remainder of a dimension but it only allows 0s and separators. (If 2 pairs of brackets are concatenated, and they're not parantheses, put 0 in between them.)
If it's attached to dimensions and not numbers, + concatenates two dimension sequences.
Multiple concatenated symbols mean variants, where each variant may or may not be distinct from other variants.
Now the rules:
Rule 1: If there's just a 0-dimension: n(0) = 10^n = 1000...000 with n 0s
Rule 2: If the first dimension is a 0-dimension:
-- 1(0)◆ = 69◆
-- (n+1)(0)◆ = (n(0)◆)◆
Rule 3: Otherwise: n◇◆ = 69◇[n]◆
Then, the most complicated part, the fundamental sequences.
◆◇[n]◇◇◆◆ = ◆◇+◇◇[n]◆◆ if ◇ ≥ ◇◇
◆◇(0)[n]◆◆ = ◆◇[n]◇◆◆
(k+1■)[1] = (k■)
(k+1■)[n+1] = (k■)(k+1■)[n]
(0)[n] = n if the 0-dimension is in something
((0)◆■)[1] = (◆■) but ◆ cannot be empty
((0)◆■)[n+1] = (◆■)((0)◆■)[n] where once again, ◆ cannot be empty
(◇◆■)[n] = (◇[n]◆■) if one of the following conditions can be satisfied:
-- ◇ is a 0-dimension but ◆ is empty.
-- ◇ is not a 0-dimension.
New symbols:
★ is a bunch of 0-separated separators (which may or may not be distinct).
☆ is some separator.
▲ is the unchanged remainder of a separator.
△ is the unchanged remainder of a separator but it only allows 0s and other separators.
Then the fundamental sequences:
(0<■■>■)[n] = (0<■■>[n]■)
<▲>[n]0<▲▲> = <▲>0<▲▲>[n] if <▲> ≥ <▲▲>
(□<0>[1]k+1■) = (□<0>k■) (The paranthesis may change)
(□<0>[1](0)◆■) = (□<0>◆■) if ◆ isn't empty (The paranthesis may change)
(□<0>[1]0■) = (□■) (The paranthesis may change)
(□<0>[n+1]k+1■) = (□(□<0>[n]k+1■)<0>k■) (The paranthesis may change)
(□<0>[n+1](0)◆■) = (□(□<0>[n](0)◆■)<0>◆■) if ◆ isn't empty (The paranthesis may change)
(□<0>[n+1]0■) = (□(□<0>[n]0■)■) where the rightmost 0 in the outer □ gets deleted (The paranthesis may change)
(□◇◆■)[n] = (◇[n]◆■) if one of the following conditions can be satisfied (The paranthesis may change):
-- ◇ is a 0-dimension but ◆ is empty.
-- ◇ is not a 0-dimension.
(□<△>0■)[n] = (□<△>[n]0■) (The paranthesis may change)
(□<△>k+1■)[n] = (□<△>[n]0<△>k■) (The paranthesis may change)
(□<△>(0)◆■)[n] = (□<△>[n]0<△>k■) (The paranthesis on the outside may change)
<k+1▲>[1] = <k▲>
<k+1▲>[n+1] = <k▲>0<k+1▲>[n]
<(0)◆▲>[1] = <◆▲> if ◆ isn't empty
<(0)◆▲>[n+1] = <◆▲>0<(0)◆▲>[n] if, once again, ◆ isn't empty
<◇◆▲>[n] = <◇[n]◆▲> if one of the following conditions can be satisfied:
-- ◇ is a 0-dimension but ◆ is empty.
-- ◇ is not a 0-dimension.
<<<...<<<0>>>...>>>[1] with k+1 <'s and >'s = <<<...<<<0>>>...>>> with k <'s and >'s
<<<...<<<0>>>...>>>[n+1] with k+1 <'s and >'s = <<<...(k <'s)...<<<0<<<...(k+1 <'s)...<<<0>>>...(k+1 <'s)...>>>[n]0>>>...(k <'s)...>>>
The superbrackets (<>s) in the fundamental sequences up to ψ0(Ω_2) can now be multiple.
This one cannot be defined because NIBN isn't defined past 69((0<0>0)<0>0), but maybe NIBNS will make it to 69(0<0[0]0>0) and I'll be able to define it. (I wonder how does the creator generalize the brackets...)
Also, I hope I won't get sued for trying to steal the creator's notation.
This one is interesting because instead of creating, fixing, extending, etc. notations, I'll simplify them.
Little note: I do not want to offend any of the notations here, but I think some are WAY TOO complicated. (Or maybe I'm just dumb XD)
This one is fine, but it becomes a nightmare when we get past pentational arrays. However, I'll still simplify it from the beginning of the dimensional arrays because... why not? I want to bring random people's tips to reality. There won't be just some tips because they're not enough. Anyway, enough gibberish, time to get to the rules.
Let # be an empty string or a string with anything.
Let & be an empty string or a string with one or more comma-separated 1s.
Let % be an empty string or a string with one or more separators separated by 1s.
Base Rule: If there are less than 3 entries: {a} = a, {a, b} = a^b
Prime Rule: If the second entry is 1: {a, 1 #} = a.
Crop-off Rule: If the last entry is 1: {# 1} = {#}
Recursion Rule: If all entries from the third one to the one before the first one with a number greater than 1 have 1s: {a, b %, &, 1, c #} = {a, a %, &, {a, b-1 %, &, 1, c #}, c-1 #} where all the 1s in the ampersand in bold (&) are replaced with a's
Prime Recursion Rule: If the third entry is bigger than 1 and follows a comma: {a, b, c #} = {a, {a, b-1, c #}, c-1 #}
Catastrophic Rule: Otherwise... (Apply the rules for {a, b #})
Start with the third entry of the array.
If it's a 1:
If it's the last entry of the array, or the following separator is bigger than the preceding one and delete the entry and the preceding separator.
Otherwise, go to the next entry until the current entry has a number greater than 1.
Otherwise, look at your left. (You're expected to be on an entry following a separator. If not, you've done something wrong.)
Change the string "A n" to "A 2 A n-1" where A is a separator and n is an integer greater than 1, then go to the first A.
If the current separator is a [2]: Replace it and the following entry with b comma-separated a's. If the [2] is the first separator after b, replace the first two entries as well.
Otherwise, go to the first entry of the current separator.
If the first entry is greater than 1, replace the separator with b copies separated by 1s and have their first entry decreased.
Otherwise, apply the entire process inside this separator with the following conditions:
Start from step 2.
Put "Otherwise, " at the beginning of step 3.1.
Move step 3.3 to step 3.4, step 3.2 to step 3.3, step 3.1 to step 3.2, and create a new step 3.1: "If the current entry follows a comma, change the previous entry to b and decrease the current entry by 1."
Add a new rule (Rule 4): "If the following separator is a hyperseparator:
Let k be the level of the following hyperseparator. ("\" has level 1, "¬" has level 2 and "\_(n)" has level n where _() means subscript)
Let p be the level of the hyperseparator with the highest level, in the separator you're inside.
Let A be the separator that is p-k layers outside the separator you're inside.
Decrease the current entry by 1.
Replace the previous entry with b copies of A with a 1 at the left and 2 at the right (Replace the innermost point with a 1, or a 2 if 1 can be deleted).
"
Change b to a.
End the process.
Tip: Each hyperseparator is a shorthand for the one 1 level higher wrapped inside "[1" and "2]". i.e. \ is a shorthand for [1 ¬ 2], ¬ is a shorthand for [1 \_(3) 2], \_(3) is a shorthand for [1 \_(4) 2], etc.
Also, 1 \ 1 \ 1 \ ... \ 1 \ 1 \ 2 is not to be confused with [1 ¬ 2]. Instead, it's [2 ¬ 2].
Similarly, 1 ¬ 1 ¬ 1 ¬ ... ¬ 1 ¬ 1 ¬ 2 is not to be confused with [1 \_(3) 2] (It's [2 \_(3) 2]), 1 \_(3) 1 \_(3) 1 \_(3) ... \_(3) 1 \_(3) 1 \_(3) 2 is not to be confused with [1 \_(4) 2] (It's [2 \_(4) 2]), 1 \_(4) 1 \_(4) 1 \_(4) ... \_(4) 1 \_(4) 1 \_(4) 2 is not to be confused with [1 \_(5) 2] (It's [2 \_(5) 2]), etc.
Finally, this version of bird's array notation has the growth rate of f_ψ(Ω_ω) in the fast-growing hierarchy.
Here's a giant list of numbers I coined.
Little Googondol = {10, 100, 10}
Little Googoadol = {10, 100, 11}
Little Goograndol = {10, 100, 12}
Little Googreadol = {10, 100, 13}
Little Googigandol = {10, 100, 14}
Little Googorgedol = {10, 100, 15}
Little Googuldol = {10, 100, 16}
Little Googaspdol = {10, 100, 17}
Little Googinordol = {10, 100, 18}
Little Googarganduul = {10, 100, 19}
Little Googonkosol = {10, 100, 20}
Little Googoakosol = {10, 100, 21}
Little Googrankosol = {10, 100, 22}
Little Googreakosol = {10, 100, 23}
Little Googigankosol = {10, 100, 24}
Little Googorgekosol = {10, 100, 25}
Little Googulkosol = {10, 100, 26}
Little Googaspkosol = {10, 100, 27}
Little Googinorkosol = {10, 100, 28}
Little Googargankosuul = {10, 100, 29}
Little Googontritol = {10, 100, 30}
Little Googoatritol = {10, 100, 31}
Little Goograntritol = {10, 100, 32}
Little Googreatritol = {10, 100, 33}
Little Googigantritol = {10, 100, 34}
Little Googorgetritol = {10, 100, 35}
Little Googultritol = {10, 100, 36}
Little Googasptritol = {10, 100, 37}
Little Googinortritol = {10, 100, 38}
Little Googargantrituul = {10, 100, 39}
Little Googonsartol = {10, 100, 40}
Little Googoasartol = {10, 100, 41}
Little Googransartol = {10, 100, 42}
Little Googreasartol = {10, 100, 43}
Little Googigansartol = {10, 100, 44}
Little Googorgesartol = {10, 100, 45}
Little Googulsartol = {10, 100, 46}
Little Googaspsartol = {10, 100, 47}
Little Googinorsartol = {10, 100, 48}
Little Googargansartuul = {10, 100, 49}
Little Googonpetol = {10, 100, 50}
Little Googoapetol = {10, 100, 51}
Little Googranpetol = {10, 100, 52}
Little Googreapetol = {10, 100, 53}
Little Googiganpetol = {10, 100, 54}
Little Googorgepetol = {10, 100, 55}
Little Googulpetol = {10, 100, 56}
Little Googasppetol = {10, 100, 57}
Little Googinorpetol = {10, 100, 58}
Little Googarganpetuul = {10, 100, 59}
Little Googonextol = {10, 100, 60}
Little Googoaextol = {10, 100, 61}
Little Googranextol = {10, 100, 62}
Little Googreaextol = {10, 100, 63}
Little Googiganextol = {10, 100, 64}
Little Googorge-extol = {10, 100, 65}
Little Googulextol = {10, 100, 66}
Little Googaspextol = {10, 100, 67}
Little Googinorextol = {10, 100, 68}
Little Googarganextuul = {10, 100, 69}
Little Googoneptol = {10, 100, 70}
Little Googoaeptol = {10, 100, 71}
Little Goograneptol = {10, 100, 72}
Little Googreaeptol = {10, 100, 73}
Little Googiganeptol = {10, 100, 74}
Little Googorge-eptol = {10, 100, 75}
Little Googuleptol = {10, 100, 76}
Little Googaspeptol = {10, 100, 77}
Little Googinoreptol = {10, 100, 78}
Little Googarganeptuul = {10, 100, 79}
Little Googonogdol = {10, 100, 80}
Little Googoaogdol = {10, 100, 81}
Little Googranogdol = {10, 100, 82}
Little Googreaogdol = {10, 100, 83}
Little Googiganogdol = {10, 100, 84}
Little Googorgeogdol = {10, 100, 85}
Little Googulogdol = {10, 100, 86}
Little Googaspogdol = {10, 100, 87}
Little Googinorogdol = {10, 100, 88}
Little Googarganogduul = {10, 100, 89}
Little Googonentol = {10, 100, 90}
Little Googoaentol = {10, 100, 91}
Little Googranentol = {10, 100, 92}
Little Googreaentol = {10, 100, 93}
Little Googiganentol = {10, 100, 94}
Little Googorge-entol = {10, 100, 95}
Little Googulentol = {10, 100, 96}
Little Googaspentol = {10, 100, 97}
Little Googinorentol = {10, 100, 98}
Little Googarganentuul = {10, 100, 99}
Little Gugold (Alternatively Little Googonhectol) = {10, 100, 100}
Gopplexathoth = 10^^10^^100 & 10
Kunplexulus = 10^^^10^^^100 & 10
Quadrunplexulus = 10^^^^10^^^^100 & 10
Quintunplexulus = 10^^^^^10^^^^^100 & 10
Gootrawamba (Normally Goobawantra) = {10, 100 (1) 3} & 10
Gooquadrawamba (Normally Goobawanquadra) = {10, 100 (1) 4} & 10
Goppatrix (Normally Quathragoth) = 10^^100 & 10 & 10
Lineatetrix = 10 & 10 & 10 & 10 = {10, 10 (1) 2} & 10 & 10
Goobawantra (Normally Elemongulus) = 100 & 10 & 10 & 10 = {10, 100 (1) 2} & 10 & 10
Lineapentix = 10 & 10 & 10 & 10 & 10 = {10, 10 (1) 2} & 10 & 10 & 10
Lineahexix = 10 & 10 & 10 & 10 & 10 & 10 = {10, 10 (1) 2} & 10 & 10 & 10 & 10
Lineaheptix = {10, 7 / 2}
Linea-octix = {10, 8 / 2}
Linea-ennix = {10, 9 / 2}
Lineadektix (Normally Dekulus) = {10, 10 / 2}
Linea-icosix = {10, 20 / 2}
Linea-triantix = {10, 30 / 2}
Linea-sarantix = {10, 40 / 2}
Linea-penintix = {10, 50 / 2}
Linea-exintix = {10, 60 / 2}
Linea-ebdomintix = {10, 70 / 2}
Linea-ogdontix = {10, 80 / 2}
Linea-enenintix = {10, 90 / 2}
Gooblol (Alternatively Linea-hectix, normally The Whopper) = {10, 100 / 2} (Fun fact: I referred to this number as legiattic goobol in my old googology series. The only reason I call this number differently is that I wanted it to have a more generalized name.)
Gibblol = {10, 100, 2 / 2}
Gabblol = {10, 100, 3 / 2}
Geeblol = {10, 100, 4 / 2}
Giblol = {10, 100, 5 / 2}
Gobblol = {10, 100, 6 / 2}
Gablol = {10, 100, 7 / 2}
Booblol = {10, 10, 100 / 2}
Corpolral = {10, 100, 1, 2 / 2}
Mulpolral = {10, 100, 2, 2 / 2}
Powpolral = {10, 100, 3, 2 / 2}
Bibblol = {10, 10, 100, 2 / 2}
Babblol = {10, 10, 100, 3 / 2}
Beeblol = {10, 10, 100, 4 / 2}
Biblol = {10, 10, 100, 5 / 2}
Bobblol = {10, 10, 100, 6 / 2}
Bablol = {10, 10, 100, 7 / 2}
Trooblol = {10, 10, 10, 100 / 2}
Goobol-blol = {10, 100 (1) 2 / 2}
Gootrol-blol = {10, 100 (1) 3 / 2}
Gossol-blol = {10, 10 (1) 100 / 2}
Mossol-blol = {10, 10 (1) 10, 100 / 2}
Dubol-blol = {10, 100 (1)(1) 2 / 2}
Dossol-blol = {10, 10 (1)(1) 100 / 2}
Goxxol-blol = {10, 100 (2) 2 / 2}
Coloxxol-blol = {10, 100 (3) 2 / 2}
Teroxxol-blol = {10, 100 (4) 2 / 2}
Petoxxol-blol = {10, 100 (5) 2 / 2}
Ectoxxol-blol = {10, 100 (6) 2 / 2}
Zettoxxol-blol = {10, 100 (7) 2 / 2}
Yottoxxol-blol = {10, 100 (8) 2 / 2}
Xenoxxol-blol = {10, 100 (9) 2 / 2}
Dekaloxxol-blol = {10, 100 (10) 2 / 2}
Icosaloxxol-blol = {10, 100 (20) 2 / 2}
Triantaloxxol-blol = {10, 100 (30) 2 / 2}
Sarantaloxxol-blol = {10, 100 (40) 2 / 2}
Penintaloxxol-blol = {10, 100 (50) 2 / 2}
Exintaloxxol-blol = {10, 100 (60) 2 / 2}
Ebdomintaloxxol-blol = {10, 100 (70) 2 / 2}
Ogdontaloxxol-blol = {10, 100 (80) 2 / 2}
Enenintaloxxol-blol = {10, 100 (90) 2 / 2}
Gongulus-blol = {10, 100 (0, 1) 2 / 2}
Bongulus-blol = {10, 100 (0, 0, 1) 2 / 2}
Goplexulus-blol = {10, 100 ((1) 1) 2 / 2}
Goppatoth-blol = {10^^100 & 10 / 2}
Kungulus-blol = {10^^^100 & 10 / 2}
Quadrunculus-blol = {10^^^^100 & 10 / 2}
Humongulus-blol = {10{100}10 & 10 / 2}
Goobawamba-blol = {100 & 10 & 10 / 2}
Goobawantra-blol (Alternatively Elemongulus-blol) = {100 & 10 & 10 & 10 / 2}
Gootlol = {10, 100 / 3}
Gooquadlol = {10, 100 / 4}
Goslol = {10, 10 / 100}
Moslol = {10, 10 / 10, 100}
Goobllol (Formerly dublol) = {10, 100 // 2}
Gooblllol (Formerly trublol) = {10, 100 /// 2}
Goobolegion = {10, 100 (1)/ 2}
Goxxolegion = {10, 100 (2)/ 2}
Gongulegion = {10, 100 (0, 1)/ 2}
Goplexulegion = {10, 100 ((1)1)/ 2}
Goppalegion = {L, X^^X}_(10,100)
Kungulegion = {L, X^^^X}_(10,100)
Quadrunculegion = {L, X^^^^X}_(10,100)
Humongulegion = {L, X{X}X}_(10,100)
Linealegitrix = 10 @ 10 @ 10
Goobalegiamba = 100 @ 10 @ 10
Linealegitetrix = 10 @ 10 @ 10 @ 10
Goobalegiantra = 100 @ 10 @ 10 @ 10
Goobaol = {L2, 1}_10,100
Goobuol = {L3, 1}_10,100
Little meameamealokkapoowa = {LX, 1}_10,100
Goobloldupe = {LL, 1}_10,100
Goobloltrupe = {LLL, 1}_10,100
Gooblolongulus = {X & L, 1}_10,100
Goobloloplexulus = {X^100 & L, 1}_10,10
Gooblothoth = {10^^100 & L, 1}_10,10
Gooblologuludupe = {L & L, 1}_10,10
Gooblologooblol = {{L, L / 2}, 1}_10,100
Gooblologooblologooblol = {{{L, L / 2}, 1}_(L, L), 1}_10,100
Gooblologooblologooblologooblol = {{{{L, L / 2}, 1}_(L, L), 1}_(L, L), 1}_10,100
Gooblasphemorgulus = {{{{{...{{{{{L, L / 2}, 1}_(L, L), 1}_(L, L), 1}_(L, L), 1}_(L, L), 1...}_(L, L), 1}_(L, L), 1}_(L, L), 1}_(L, L), 1}_(10, 100) where there are 100 arrays in total
Googolnovemnonagintiplex (Normally Grangol) = E100#100
Grand Grangol (Alternatively Googolnovemnonagintiplexidex, normally Grangoldex) = E100#100#2
Grand Grand Grangol (Alternatively Googolnovemnonagintiplexidudex, normally Grangoldudex) = E100#100#3
Googolnovemnonagintiplexinovemnonagintidex (Normally Greagol) = E100#100#100
Googolnovemnonagintiplexinovemnonagintidexinovemnonagintithrexinovemnonagintitetrexinovemnonagintipentexinovemnonagintihexinovemnonagintiheptexinovemnonaginti-octexinovemnonaginti-ennex (Normally Googondol) = E100#100#100#100#100#100#100#100#100#100
Googolnovemnonagintiplexinovemnonagintidexinovemnonagintithrexinovemnonagintitetrexinovemnonagintipentexinovemnonagintihexinovemnonagintiheptexinovemnonaginti-octexinovemnonaginti-ennexinovemnonagintidecexinovemnonaginti-undecexinovemnonagintiduodecexinovemnonagintitredecexinovemnonagintiquattordecexinovemnonagintiquindecexinovemnonagintisexdecexinovemnonagintiseptemdecexinovemnonaginti-octadecexinovemnonaginti-novemdecexinovemnonagintivigintexinovemnonaginti-unvigintexinovemnonagintiduovigintexinovemnonagintitrevigintexinovemnonagintiquattorvigintexinovemnonagintiquinvigintexinovemnonagintisexvigintexinovemnonagintiseptemvigintexinovemnonaginti-octavigintexinovemnonaginti-novemvigintexinovemnonagintitrigintexinovemnonaginti-untrigintexinovemnonagintiduotrigintexinovemnonagintitretrigintexinovemnonagintiquattortrigintexinovemnonagintiquintrigintexinovemnonagintisextrigintexinovemnonagintiseptemtrigintexinovemnonaginti-octatrigintexinovemnonaginti-novemtrigintexinovemnonagintiquadragintexinovemnonaginti-unquadragintexinovemnonagintiduoquadragintexinovemnonagintitrequadragintexinovemnonagintiquattorquadragintexinovemnonagintiquinquadragintexinovemnonagintisexquadragintexinovemnonagintiseptemquadragintexinovemnonaginti-octaquadragintexinovemnonaginti-novemquadragintexi...novemnonagintinovemnonagintinovemnonagintinovemnonagintex (Normally Gugold) = E100##100
Googolcentex = E100#1#1#1#...#1#1#1#2 where there are 100 #'s
Googolmillex = E100#1#1#1#...#1#1#1#2 where there are 1,000 #'s
Googolmicrex = E100#1#1#1#...#1#1#1#2 where there are 1,000,000 #'s
Googolnanex = E100#1#1#1#...#1#1#1#2 where there are 1,000,000,000 #'s
Godgahlah-plexed-grangol (Formerly godgahlah-plexed-googol) = E100#^#1#2
Godgahlah-plexed-gugold = E100#^#2#2
Godgahlah-plexed-throogol = E100#^#3#2
Godgahlah-plexed-pentoogol = E100#^#5#2
Godgahlah-plexed-dektoogol = E100#^#10#2
Godgahlah-plexed-icosolus = E100#^#20#2
Godgahlah-plexed-godgahlah (Normally Grand Godgahlah) = E100#^#100#2
Godgahlah-dexed-googol = E100#^#1#1#2
Godgahlah-suplexed = E100#^#100##1#2
Gotrigahlah-plexed-godgahlah = E100#^#100#^#1#2
Godgahlah-by-hyperion (Normally Godgoldgahlah) = E100#^#*#100 (Fun fact: I featured this in my old googology series)
Godgahlah-by-deutero-hyperion (Normally Godthroogahlah) = E100#^#*##100
Godgahlah-by-trito-hyperion (Normally Godtetroogahlah) = E100#^#*###100
Godgahlah-by-teterto-hyperion = E100#^#*####100
Godgahlah-by-pepto-hyperion = E100#^#*#####100
Godgahlah-by-epto-hyperion = E100#^#*#^#7
Godgahlah-by-ogdo-hyperion = E100#^#*#^#8
Godgahlah-by-ento-hyperion = E100#^#*#^#9
Godgahlah-by-dekato-hyperion = E100#^#*#^#10
Godgahlah-by-isosto-hyperion = E100#^#*#^#20
Godgahlah-by-trianto-hyperion = E100#^#*#^#30
Godgahlah-by-saranto-hyperion = E100#^#*#^#40
Godgahlah-by-peninto-hyperion = E100#^#*#^#50
Godgahlah-by-exinto-hyperion = E100#^#*#^#60
Godgahlah-by-ebdominto-hyperion = E100#^#*#^#70
Godgahlah-by-ogdonto-hyperion = E100#^#*#^#80
Godgahlah-by-eneninto-hyperion = E100#^#*#^#90
Godgahlah-by-godgahlah (Alternatively Godgahlah-by-hecato-hyperion, Normally Deutero-godgahlah) = E100#^#*#^#100
Extended Cascading-E Notation (xE^)
Godhecatathol (Alternatively ascended grangol, normally Tethrathothitoth) = E100#^^#101
Tethrigridi-iterator (Normally Tethritergriditerator) = E100#^^#>(##+#)100
Tethrigridi-diterator (Normally Tethriditergriditerator) = E100#^^#>(##+#+#)100
Tethrigridi-triterator (Normally Tethritritergriditerator) = E100#^^#>(##+#+#)100
Tethridigriditerator (Normally Throotrigol-turreted-tethrathoth) = E100#^^#>(##+##)100
Tethritrigriditerator (Normally Throotergol-turreted-tethrathoth) = E100#^^#>(##+##+##)100
Tethricubicul-iterator = E100#^^#>(###+#)100
Tethridecicul-nonicul-octicul-septicul-sexticul-quinticul-quarticul-cubicul-gridi-iterator = E100#^^#>(#^10+#^9+#^8+#^7+#^6+#^5+####+###+##+#)100
Tethrato-deutero-gralgathor = E100#^^(#^#^##*#^#^##)100
Tethrato-gralgathorfact = E100#^^#^(#^##*#)100
Tethrato-gralgathordeus = E100#^^#^(#^##*#^##)100
Tethrarxihendeck = E100#^^^#11
Tethrarxidodeck = E100#^^^#12
Tethrarxitriadeck = E100#^^^#13
Tethrarxitetradeck = E100#^^^#14
Tethrarxipentadeck = E100#^^^#15
Tethrarxihexadeck = E100#^^^#16
Tethrarxiheptadeck = E100#^^^#17
Tethrarxi-octadeck = E100#^^^#18
Tethrarxi-ennadeck = E100#^^^#19
Tethrarxihenicose = E100#^^^#21
Tethrarxidoicose = E100#^^^#22
Tethrarxitricose = E100#^^^#23
Tethrarxitetricose = E100#^^^#24
Tethrarxipenticose = E100#^^^#25
Pentoocthulhum (Normally Tethrarxi-googliad) = E100#^^^#(E100)
Pentacthulhum-plexed-tethrathoth = E100#^^^#2#2
Pentacthulhum-plexed-tethrato-tethrathoth (Alternatively Pentacthulhum-plexed-tethrarxitri) = E100#^^^#3#2
Pentacthulhum-plexed-pentacthulhum (Normally Grand Pentacthulhum) = E100#^^^#100#2
Pentacthulhum-duplexed-googol = E100#^^^#1#3
Pentacthulhum-triplexed-googol = E100#^^^#1#4
Pentacthulhum-dexed-googol = E100#^^^#1#1#2
Pentacthulhum-dexed-tethrathoth = E100#^^^#2#1#2
Pentacthulhum-suplexed = E100#^^^#100##1#2
Pentacthulhum-dusuplexed = E100#^^^#100##1#3
Pentacthulhum-sudexed = E100#^^^#100##1#1#2
Pentacthulhum-plexitris = E100#^^^#100##100##1#2
Pentadeucthulhum (Normally Pentacthuldugon) = E100(#^^^#)^^^#100
Pentacthulspatialator (Normally Godgahlah-turreted-pentacthulhum) = E100#^^^#>#^#100
Pentacthulsuperspatialator (Alternatively Godgathor-turreted-pentacthulhum) = E100#^^^#>#^#^#100
Hexacthulditerator = E100#^^^#>(#+#)100
Hexacthultriterator = E100#^^^#>(#+#+#)100
Hexacthulgriditerator = E100#^^^#>##100
Hexacthulgridi-iterator = E100#^^^#>(##+#)100
Hexacthulgridi-diterator = E100#^^^#>(##+#+#)100
Hexacthuldigriditerator = E100#^^^#>(##+##)100
Hexacthuldigridi-iterator = E100#^^^#>(##+##+#)100
Hexacthultrigriditerator = E100#^^^#>(##+##+##)100
Hexacthulcubiculator = E100#^^^#>###100
Astraliagog = E100#{#}#149,597,870,700 (149,597,870,700 is the amount of meters in an astronomical unit)
Godsgodgahlah regiment
Godsgodgahlah = E100#{#+1}#100
Godsgodarxichill (Formerly godsgodgularxichill) = E100#{#+1}#1,000
Godsgodarximyr (Formerly godsgodgularximyr) = E100#{#+1}#10,000
Godsgodarximegas (Formerly godsgodgularximega) = E100#{#+1}#1,000,000
Godsgoogahlah = E100#{#+1}#(E100)
Grand godsgodgahlah = E100#{#+1}#100#2
Grand grand godsgodgahlah = E100#{#+1}#100#3
Three-ex-grand godsgodgahlah = E100#{#+1}#100#4
Four-ex-grand godsgodgahlah = E100#{#+1}#100#5
Five-ex-grand godsgodgahlah = E100#{#+1}#100#6
Six-ex-grand godsgodgahlah = E100#{#+1}#100#7
Seven-ex-grand godsgodgahlah = E100#{#+1}#100#8
Eight-ex-grand godsgodgahlah = E100#{#+1}#100#9
Nine-ex-grand godsgodgahlah = E100#{#+1}#100#10
Ten-ex-grand godsgodgahlah = E100#{#+1}#100#11
Eleven-ex-grand godsgodgahlah = E100#{#+1}#100#12
Twelve-ex-grand godsgodgahlah = E100#{#+1}#100#13
Thirteen-ex-grand godsgodgahlah = E100#{#+1}#100#14
Fourteen-ex-grand godsgodgahlah = E100#{#+1}#100#15
Fifteen-ex-grand godsgodgahlah = E100#{#+1}#100#16
Sixteen-ex-grand godsgodgahlah = E100#{#+1}#100#17
Seventeen-ex-grand godsgodgahlah = E100#{#+1}#100#18
Eighteen-ex-grand godsgodgahlah = E100#{#+1}#100#19
Nineteen-ex-grand godsgodgahlah = E100#{#+1}#100#20
Twenty-ex-grand godsgodgahlah = E100#{#+1}#100#21
Thirty-ex-grand godsgodgahlah = E100#{#+1}#100#31
Forty-ex-grand godsgodgahlah = E100#{#+1}#100#41
Fifty-ex-grand godsgodgahlah = E100#{#+1}#100#51
Sixty-ex-grand godsgodgahlah = E100#{#+1}#100#61
Seventy-ex-grand godsgodgahlah = E100#{#+1}#100#71
Eighty-ex-grand godsgodgahlah = E100#{#+1}#100#81
Ninety-ex-grand godsgodgahlah = E100#{#+1}#100#91
Grangol-carta-godsgodgahlah = E100#{#+1}#100#100
Hundred-ex-grand godsgodgahlah = E100#{#+1}#100#101
Thousand-ex-grand godsgodgahlah = E100#{#+1}#100#1,001
Million-ex-grand godsgodgahlah = E100#{#+1}#100#1,000,001
Googol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100)
Grangol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#100)
Greagol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#100#100)
Gigangol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#100#100#100)
Gorgegol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#100#100#100#100)
Gulgol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##6)
Gaspgol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##7)
Ginorgol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##8)
Gargantuul-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##9)
Googondol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##10)
Gugold-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##100)
Gugolthra-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100##100##100)
Gugoltesla-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100###4)
Gugolpeta-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100###5)
Gugoldeka-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100###10)
Throogol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100###100)
Tetroogol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100####100)
Pentoogol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#####100)
Godgahlah-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^#100)
Gridgahlah-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^##100)
Kubikahlah-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^###100)
Godgathor-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^#^#100)
Godtothol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^#^#^#100)
Godtertol-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^#^#^#^#100)
Tethrathoth-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^#100)
Tethriterator-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^#>#100)
Tethracross-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^##100)
Tethracubor-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^###100)
Tethratope-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^#^#100)
Tethrato-tethrathoth-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^#^^#100)
Pentacthulhum-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^^#100)
Pentacthulcross-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^^##100)
Pentacthultope-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^^#^#100)
Hexacthulhum-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#^^^^#100)
Godsgodgulus-ex-grand godsgodgahlah = E100#{#+1}#100#(1+E100#{#}#100)
Grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#2
Grand grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#3
Three-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#4
Four-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#5
Five-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#6
Six-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#7
Seven-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#8
Eight-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#9
Nine-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#10
Ten-ex-grand grangol-carta-godsgodgahlah = E100#{#+1}#100#100#11
Greagol-carta-godsgodgahlah = E100#{#+1}#100#100#100
Gigangol-carta-godsgodgahlah = E100#{#+1}#100#100#100#100
Gorgegol-carta-godsgodgahlah = E100#{#+1}#100#100#100#100#100
Gulgol-carta-godsgodgahlah = E100#{#+1}#100##6
Gaspgol-carta-godsgodgahlah = E100#{#+1}#100##7
Ginorgol-carta-godsgodgahlah = E100#{#+1}#100##8
Gargantuul-carta-godsgodgahlah = E100#{#+1}#100##9
Googondol-carta-godsgodgahlah = E100#{#+1}#100##10
Gugold-carta-godsgodgahlah = E100#{#+1}#100##100
Gugolthra-carta-godsgodgahlah = E100#{#+1}#100##100##100
Throogol-carta-godsgodgahlah = E100#{#+1}#100###100
Tetroogol-carta-godsgodgahlah = E100#{#+1}#100####100
Godgahlah-carta-godsgodgahlah = E100#{#+1}#100#^#100
Gridgahlah-carta-godsgodgahlah = E100#{#+1}#100#^##100
Godgathor-carta-godsgodgahlah = E100#{#+1}#100#^#^#100
Godtothol-carta-godsgodgahlah = E100#{#+1}#100#^#^#^#100
Tethrathoth-carta-godsgodgahlah = E100#{#+1}#100#^^#100
Tethracross-carta-godsgodgahlah = E100#{#+1}#100#^^##100
Tethratope-carta-godsgodgahlah = E100#{#+1}#100#^^#^#100
Pentacthulhum-carta-godsgodgahlah = E100#{#+1}#100#^^^#100
Hexacthulhum-carta-godsgodgahlah = E100#{#+1}#100#^^^^#100
Godsgodgulus-carta-godsgodgahlah = E100#{#+1}#100#{#}#100
Godsgodgularxitri-carta-godsgodgahlah = E100#{#+1}#100#{#}#{#}#100
Godsgodgularxitet-carta-godsgodgahlah = E100#{#+1}#100#{#}#{#}#{#}#100
Godsgodgularxipent-carta-godsgodgahlah = E100#{#+1}#100#{#}#{#}#{#}#{#}#100
Godsgodgularxideck-carta-godsgodgahlah = E100#{#+1}#100#{#+1}#10
Godsgodgahlah-by-deuteron = E100#{#+1}#100#{#+1}#100
Godsgodgahlah-by-triton = E100#{#+1}#100#{#+1}#100#{#+1}#100
Godsgodgahlah-by-teterton = E100#{#+1}#*#5
Godsgodgahlah-by-pepton = E100#{#+1}#*#6
Godsgodgahlah-by-exton = E100#{#+1}#*#7
Godsgodgahlah-by-epton = E100#{#+1}#*#8
Godsgodgahlah-by-ogdon = E100#{#+1}#*#9
Godsgodgahlah-by-enton = E100#{#+1}#*#10
Godsgodgahlah-by-dekaton = E100#{#+1}#*#11
Godsgodgahlah-by-hyperion = E100#{#+1}#*#100
Godsgodgahlah-by-deutero-hyperion = E100#{#+1}#*##100
Godsgodgahlah-by-trito-hyperion = E100#{#+1}#*###100
Godsgodgahlah-by-teterto-hyperion = E100#{#+1}#*####100
Godsgodgahlah-by-pepto-hyperion = E100#{#+1}#*#####100
Godsgodgahlah-by-dekato-hyperion = E100#{#+1}#*#^#10
Godsgodgahlah-by-godgahlah = E100#{#+1}#*#^#100
Godsgodgahlah-by-gridgahlah = E100#{#+1}#*#^##100
Godsgodgahlah-by-kubikahlah = E100#{#+1}#*#^###100
Godsgodgahlah-by-quarticahlah = E100#{#+1}#*#^####100
Godsgodgahlah-by-quinticahlah = E100#{#+1}#*#^#####100
Godsgodgahlah-by-decicahlah = E100#{#+1}#*#^#^#10
Godsgodgahlah-by-godgathor = E100#{#+1}#*#^#^#100
Godsgodgahlah-by-godtothol = E100#{#+1}#*#^#^#^#100
Godsgodgahlah-by-godtertol = E100#{#+1}#*#^#^#^#^#100
Godsgodgahlah-by-tethrathoth = E100#{#+1}#*#^^#100
Godsgodgahlah-by-tethriterator = E100#{#+1}#*#^^#>#100
Godsgodgahlah-by-tethracross = E100#{#+1}#*#^^##100
Godsgodgahlah-by-tethratope = E100#{#+1}#*#^^#^#100
Godsgodgahlah-by-pentacthulhum = E100#{#+1}#*#^^^#100
Godsgodgahlah-by-godsgodgulus = E100#{#+1}#*#{#}#100
Deutero-godsgodgahlah = E100#{#+1}#*#{#+1}#100
Trito-godsgodgahlah = E100#{#+1}#*#{#+1}#*#{#+1}#100
Teterto-godsgodgahlah = E100(#{#+1}#)^#4
Pepto-godsgodgahlah = E100(#{#+1}#)^#5
Exto-godsgodgahlah = E100(#{#+1}#)^#6
Epto-godsgodgahlah = E100(#{#+1}#)^#7
Ogdo-godsgodgahlah = E100(#{#+1}#)^#8
Ento-godsgodgahlah = E100(#{#+1}#)^#9
Dekato-godsgodgahlah = E100(#{#+1}#)^#10
Godsgodgahlahfact = E100(#{#+1}#)^#100
Godsgodgahlahgridifact = E100(#{#+1}#)^##100
Godsgodgahlah-ipso-godgahlah = E100(#{#+1}#)^#^#100
Godsgodgahlah-ipso-godgathor = E100(#{#+1}#)^#^#^#100
Godsgodgahlah-ipso-tethrathoth = E100(#{#+1}#)^#^^#100
Godsgodgahlah-ipso-tethriterator = E100(#{#+1}#)^(#^^#>#)100
Godsgodgahlah-ipso-tethracross = E100(#{#+1}#)^#^^##100
Godsgodgahlah-ipso-tethratope = E100(#{#+1}#)^#^^#^#100
Godsgodgahlah-ipso-pentacthulhum = E100(#{#+1}#)^#^^^#100
Godsgodgahlah-ipso-godsgodgulus = E100(#{#+1}#)^(#{#}#)100
Dutetrated-godsgodgahlah = E100(#{#+1}#)^(#{#+1}#)100
Tritetrated-godsgodgahlah = E100(#{#+1}#)^(#{#+1}#)^(#{#+1}#)100
Terrible godsgodgahlah = E100(#{#+1}#)^^#100
Two-ex-terrible godsgodgahlah = E100((#{#+1}#)^^#)^^#100
Territerated godsgodgahlah = E100(#{#+1}#)^^#>#100
Terrisquared godsgodgahlah = E100(#{#+1}#)^^##100
Terricubed godsgodgahlah = E100(#{#+1}#)^^###100
Territoped godsgodgahlah = E100(#{#+1}#)^^#^#100
Horrible godsgodgahlah = E100(#{#+1}#)^^^#100
Horritoped godsgodgahlah = E100(#{#+1}#)^^^#^#100
Horrendous godsgodgahlah = E100(#{#+1}#)^^^^#100
Godsgorrendous godsgodgahlah = E100(#{#+1}#){#}#100
Duplicated-godsgodgahlah = E100(#{#+1}#){#+1}#100
Triplicated-godsgodgahlah = E100((#{#+1}#){#+1}#){#+1}#100,
Godsgodgahiterator = E100#{#+1}#>#100
Godsgodgahditerator = E100#{#+1}#>(#+#)100
Godsgodgahtriterator = E100#{#+1}#>(#+#+#)100
Godsgodgahgriditerator = E100#{#+1}#>##100
Godsgodgahgridi-iterator = E100#{#+1}#>(##+#)100
Godsgodgahgridi-diterator = E100#{#+1}#>(##+#+#)100
Godsgodgahgridi-triterator = E100#{#+1}#>(##+#+#+#)100
Godsgodgahdigriditerator = E100#{#+1}#>(##+##)100
Godsgodgahdigridi-iterator = E100#{#+1}#>(##+##+#)100
Godsgodgahdigridi-diterator = E100#{#+1}#>(##+##+#+#)100
Godsgodgahdigridi-triterator = E100#{#+1}#>(##+##+#+#+#)100
Godsgodgahtrigriditerator = E100#{#+1}#>(##+##+##)100
Godsgodgahcubiculator = E100#{#+1}#>###100
Godsgodgahcubicul-iterator = E100#{#+1}#>(###+#)100
Godsgodgahcubicul-diterator = E100#{#+1}#>(###+#+#)100
Godsgodgahcubicul-triterator = E100#{#+1}#>(###+#+#+#)100
Godsgodgahcubicul-griditerator = E100#{#+1}#>(###+##)100
Godsgodgahcubicul-gridi-iterator = E100#{#+1}#>(###+##+#)100
Godsgodgahcubicul-gridi-diterator = E100#{#+1}#>(###+##+#+#)100
Godsgodgahcubicul-digriditerator = E100#{#+1}#>(###+##+##)100
Godsgodgahcubicul-digridi-iterator = E100#{#+1}#>(###+##+##+#)100
Godsgodgahcubicul-trigriditerator = E100#{#+1}#>(###+##+##+##)100
Godsgodgahducubiculator = E100#{#+1}#>(###+###)100
Godsgodgahducubicul-iterator = E100#{#+1}#>(###+###+#)100
Godsgodgahducubicul-diterator = E100#{#+1}#>(###+###+##)100
Godsgodgahtricubiculator = E100#{#+1}#>(###+###+###)100
Godsgodgahquarticulator = E100#{#+1}#>####100
Godsgodgahduquarticulator = E100#{#+1}#>(####+####)100
Godsgodgahquinticulator = E100#{#+1}#>#####100
Godsgodgahsexticulator = E100#{#+1}#>(#^6)100
Godsgodgahsepticulator = E100#{#+1}#>(#^7)100
Godsgodgahocticulator = E100#{#+1}#>(#^8)100
Godsgodgahnoniculator = E100#{#+1}#>(#^9)100
Godsgodgahdeciculator = E100#{#+1}#>(#^10)100
Godsgodgahdecicul-nonicul-octicul-septicul-sexticul-quinticul-quarticul-cubicul-gridi-iterator = E100#{#+1}#>(#^10+#^9+#^8+#^7+#^6+#^5+####+###+##+#)100
Godsgodgahspatialator (Alternatively godgahlah-turreted-godsgodgahlah) = E100#{#+1}#>#^#100
Godgoldgahlah-turreted-godsgodgahlah = E100#{#+1}#>(#^#*#)100
Godthroogahlah-turreted-godsgodgahlah = E100#{#+1}#>(#^#*##)100
Deutero-godgahlah-turreted-godsgodgahlah = E100#{#+1}#>(#^#*#^#)100
Trito-godgahlah-turreted-godsgodgahlah = E100#{#+1}#>(#^#*#^#*#^#)100
Gridgahlah-turreted-godsgodgahlah = E100#{#+1}#>#^##100
Kubikahlah-turreted-godsgodgahlah = E100#{#+1}#>#^###100
Godgathor-turreted-godsgodgahlah = E100#{#+1}#>#^#^#100
Tethrathoth-turreted-godsgodgahlah = E100#{#+1}#>#^^#100
Tethriterator-turreted-godsgodgahlah = E100#{#+1}#>#^^#>#100
Tethracross-turreted-godsgodgahlah = E100#{#+1}#>#^^##100
Tethratope-turreted-godsgodgahlah = E100#{#+1}#>#^^#^#100
Pentacthulhum-turreted-godsgodgahlah = E100#{#+1}#>#^^^#100
Hexacthulhum-turreted-godsgodgahlah = E100#{#+1}#>#^^^^#100
Godsgodgulus-turreted-godsgodgahlah = E100#{#+1}#>#{#}#100
Dustaculated-godsgodgahlah = E100#{#+1}#>#{#+1}#100
Tristaculated-godsgodgahlah = E100#{#+1}#>#{#+1}#>#{#+1}#100
Tetrastaculated-godsgodgahlah = E100#{#+1}##4
Pentastaculated-godsgodgahlah = E100#{#+1}##5
Dekastaculated-godsgodgahlah = E100#{#+1}##10
Godsgodgahcross = E100#{#+1}##100
Godsgodgahitercross = E100#{#+1}##>#100
Dustaculated-godsgodgahcross = E100#{#+1}##>#{#+1}##100
Godsgodgahcubor = E100#{#+1}###100
Godsgodgahtope = E100#{#+1}#^#100
Godsgodgahulto-godgathor = E100#{#+1}#^#^#100
Godsgodgahulto-tethrathoth = E100#{#+1}#^^#100
Godsgodgahulto-pentacthulhum = E100#{#+1}#^^^#100
Godsgodgahulto-godsgodgulus = E100#{#+1}#{#}#100
Godsgodgahulto-godsgodgahlah (Alternatively Godsgodgahularxitri) = E100#{#+1}#{#+1}#100
Godsgodgahularxideck = E100#{#+2}#10
End of the godsgodgahlah regiment
Beginning of the godsgotethrathoth regiment
Godsgotethrathoth = E100#{#+2}#100
Grand godsgotethrathoth = E100#{#+2}#100#2
Grangol-carta-godsgotethrathoth = E100#{#+2}#100#100
Greagol-carta-godsgotethrathoth = E100#{#+2}#100#100#100
Gugold-carta-godsgotethrathoth = E100#{#+2}#100##100
Throogol-carta-godsgotethrathoth = E100#{#+2}#100###100
Godgahlah-carta-godsgotethrathoth = E100#{#+2}#100#^#100
Godgathor-carta-godsgotethrathoth = E100#{#+2}#100#^#^#100
Tethrathoth-carta-godsgotethrathoth = E100#{#+2}#100#^^#100
Pentacthulhum-carta-godsgotethrathoth = E100#{#+2}#100#^^^#100
Godsgodgulus-carta-godsgotethrathoth = E100#{#+2}#100#{#}#100
Godsgodgahlah-carta-godsgotethrathoth = E100#{#+2}#100#{#+1}#100
Godsgotethrathoth-by-deuteron = E100#{#+2}#100#{#+2}#100
Godsgotethrathoth-by-triton = E100#{#+2}#100#{#+2}#100#{#+2}#100
Godsgotethrathoth-by-teterton = E100#{#+2}#*#5
Godsgotethrathoth-by-pepton = E100#{#+2}#*#6
Godsgotethrathoth-by-dekaton = E100#{#+2}#*#11
Godsgotethrathoth-by-hyperion = E100#{#+2}#*#100
Godsgotethrathoth-by-deutero-hyperion = E100#{#+2}#*##100
Godsgotethrathoth-by-godgahlah = E100#{#+2}#*#^#100
Godsgotethrathoth-by-tethrathoth = E100#{#+2}#*#^^#100
Godsgotethrathoth-by-pentacthulhum = E100#{#+2}#*#^^^#100
Godsgotethrathoth-by-godsgodgulus = E100#{#+2}#*#{#}#100
Godsgotethrathoth-by-godsgodgahlah = E100#{#+2}#*#{#+1}#100
Deutero-godsgotethrathoth = E100#{#+2}#*#{#+2}#100
Trito-godsgotethrathoth = E100#{#+2}#*#{#+2}#*#{#+2}#100
Godsgotethrafact = E100(#{#+2}#)^#100
Godsgotethragridifact = E100(#{#+2}#)^##100
Godsgotethrathoth-ipso-godgahlah = E100(#{#+2}#)^#^#100
Godsgotethrathoth-ipso-godgathor = E100(#{#+2}#)^#^#^#100
Godsgotethrathoth-ipso-tethrathoth = E100(#{#+2}#)^#^^#100
Godsgotethrathoth-ipso-pentacthulhum = E100(#{#+2}#)^#^^^#100
Godsgotethrathoth-ipso-godsgodgulus = E100(#{#+2}#)^#{#}#100
Godsgotethrathoth-ipso-godsgodgahlah = E100(#{#+2}#)^#{#+1}#100
Dutetrated-godsgotethrathoth = E100(#{#+2}#)^#{#+2}#100
Tritetrated-godsgotethrathoth = E100(#{#+2}#)^(#{#+2}#)^#{#+2}#100
Terrible godsgotethrathoth = E100(#{#+2}#)^^#100
Terrisquared godsgotethrathoth = E100(#{#+2}#)^^##100
Territoped godsgotethrathoth = E100(#{#+2}#)^^#^#100
Horrible godsgotethrathoth = E100(#{#+2}#)^^^#100
Horrendous godsgotethrathoth = E100(#{#+2}#)^^^^#100
Godsgorrendous godsgotethrathoth = E100(#{#+2}#){#}#100
Godsgodgahlah-rendous godsgotethrathoth = E100(#{#+2}#){#+1}#100
Duplicated-godsgotethrathoth = E100(#{#+2}#){#+2}#100
Triplicated-godsgotethrathoth = E100((#{#+2}#){#+2}#){#+2}#100
Godsgotethriterator = E100#{#+2}#>#100
Godsgotethriditerator = E100#{#+2}#>(#+#)100
Godsgotethritriterator = E100#{#+2}#>(#+#+#)100
Godsgotethrigriditerator = E100#{#+2}#>##100
Godsgotethrigridi-iterator = E100#{#+2}#>(##+#)100
Godsgotethrigridi-diterator = E100#{#+2}#>(##+#+#)100
Godsgotethridigriditerator = E100#{#+2}#>(##+##)100
Godsgotethricubiculator = E100#{#+2}#>###100
Godsgotethriquarticulator = E100#{#+2}#>####100
Godsgotethrispatialator = E100#{#+2}#>#^#100
Godsgotethrisuperspatialator = E100#{#+2}#>#^#^#100
Tethrathoth-turreted-godsgotethrathoth = E100#{#+2}#>#^^#100
Tethracross-turreted-godsgotethrathoth = E100#{#+2}#>#^^##100
Tethratope-turreted-godsgotethrathoth = E100#{#+2}#>#^^#^#100
Pentacthulhum-turreted-godsgotethrathoth = E100#{#+2}#>#^^^#100
Hexacthulhum-turreted-godsgotethrathoth = E100#{#+2}#>#^^^^#100
Godsgodgulus-turreted-godsgotethrathoth = E100#{#+2}#>#{#}#100
Godsgodgahlah-turreted-godsgotethrathoth = E100#{#+2}#>#{#+1}#100
Dustaculated-godsgotethrathoth = E100#{#+2}#>#{#+2}#100
Tristaculated-godsgotethrathoth = E100#{#+2}#>#{#+2}#>#{#+2}#100
Godsgotethracross = E100#{#+2}##100
Godsgotethracubor = E100#{#+2}###100
Godsgotethrateron = E100#{#+2}####100
Godsgotethratope = E100#{#+2}#^#100
Godsgotethrato-godgathor = E100#{#+2}#^#^#100
Godsgotethrato-tethrathoth = E100#{#+2}#^^#100
Godsgotethrato-tethracross = E100#{#+2}#^^##100
Godsgotethrato-tethratope = E100#{#+2}#^^#^#100
Godsgotethrato-pentacthulhum = E100#{#+2}#^^^#100
Godsgotethrato-hexacthulhum = E100#{#+2}#^^^^#100
Godsgotethrato-godsgodgulus = E100#{#+2}#{#}#100
Godsgotethrato-godsgodgahlah = E100#{#+2}#{#+1}#100
Godsgotethrarxitri = E100#{#+2}#{#+2}#100
Godsgotethrarxipent = E100#{#+2}#{#+2}#{#+2}#{#+2}#100
Godsgotethrarxideck = E100#{#+3}#10
End of the godsgotethrathoth regiment
Beginning of the godsgopentacthulhum regiment
Godsgopentacthulhum (Alternatively Godsgotethrarxihect) = E100#{#+3}#100
Godsgopentacthulhuchime = E100#{#+3}#1,000
Godsgopentacthulhutoll = E100#{#+3}#10,000
Godsgopentacthulhugong = E100#{#+3}#100,000
Grand godsgopentacthulhum = E100#{#+3}#100#2
End of the godsgopentacthulhum regiment
Godsgohexacthulhum = E100#{#+4}#100
Godsgoheptacthulhum = E100#{#+5}#100
Godsgodekacthulhum = E100#{#+8}#100
Godsgododekacthulhum (Alternatively godsgoliath) = E100#{#+10}#100
Godsgodopenantacthulhum (Alternatively godsgolligog) = E100#{#+50}#100
Godsgodeuiterator = E100#{#+#}#>#100
Godsgodeugriditerator = E100#{#+#}#>##100
Dustaculated-godsgodeus = E100#{#+#}#>#{#+#}#100
Godsgodeucross = E100#{#+#}##100
Godsgodeucubor = E100#{#+#}###100
Godsgodeutope = E100#{#+#}#^#100
Godsgodeu-arxitri = E100#{#+#}#{#+#}#100
Godsgodeugahlah (Alternatively godsgodeu-arxihect) = E100#{#+#+1}#100
Godsgodeugahcross = E100#{#+#+1}##100
Godsgodeugahcubor = E100#{#+#+1}###100
Godsgodeugahtope = E100#{#+#+1}#^#100
Godsgodeugahularxitri = E100#{#+#+2}#3
Godsgodeutethrathoth = E100#{#+#+2}#100
Godsgodeupentacthulhum = E100#{#+#+3}#100
Godsgotreusgahlah = E100#{#+#+#+1}#100
Godsgotreusthratoth = E100#{#+#+#+2}#100
Godsgotreuspentacthulhum = E100#{#+#+#+3}#100
Godscrossgulus = E100#{##}#100
Godscrossgahlah = E100#{##+1}#100
Godscrossthrathoth = E100#{##+2}#100
Godscrosspentacthulhum = E100#{##+3}#100
Godscrossgodgulus = E100#{##+#}#100
Godscrossgodeus = E100#{##+#+#}#100
Godscrossgotreus = E100#{##+#+#+#}#100
Godsdeucrossgulus = E100#{##+##}#100
Godstreucrossgulus = E100#{##+##+##}#100
Godscuborgulus = E100#{###}#100
Godsterongulus = E100#{####}#100
Godsdekongulus = E100#{#^10}#100
Godstopegulus (Normally The centurion) = E100#{#^#}#100
Godstopodeugulus = E100#{#^#*#^#}#100
Godslattitopogulus = E100#{#^##}#100
Godscubitopogulus = E100#{#^###}#100
Gods-godgathor-gulus = E100#{#^#^#}#100
Gods-gralgathor-gulus = E100#{#^#^##}#100
Gods-godtothol-gulus = E100#{#^#^#^#}#100
Gods-tethrathoth-gulus (Normally Super centurion) = E100#{#^^#}#100
Gods-monster-giant-gulus = E100#{(#^^#)^(#^^#)^#}#100
Gods-tethriterator-gulus = E100#{#^^#>#}#100
Gods-tethracross-gulus = E100#{#^^##}#100
Gods-tethratope-gulus = E100#{#^^#^#}#100
Gods-tethrarxitri-gulus = E100#{#^^#^^#}#100
Gods-pentacthulhum-gulus = E100#{#^^^#}#100
Gods-hexacthulhum-gulus = E100#{#^^^^#}#100
Gods-godsgodgulus-gulus (Alternatively godsarxitrigulus, Normally Ohmygosh-ohmygosh-ohmygooosh) = E100#{#{#}#}#100
Godsarxitetgulus (Normally Ohmygosh-ohmygosh-ohmygosh-ohmygooosh) = E100#{#{#{#}#}#}#100
Godsarxipentgulus (Normally Ohmygosh-ohmygosh-ohmygosh-ohmygosh-ohmygooosh) = E100#{#{#{#{#}#}#}#}#100
Godsarxideckgulus = E100#{{1}}#10
Godsarxicosgulus = E100#{{1}}#20
Godsarxitriangulus = E100#{{1}}#30
Godsarxisarangulus = E100#{{1}}#40
Godsarxipeningulus = E100#{{1}}#50
Godsarxiexingulus = E100#{{1}}#60
Godsarxiebdomingulus = E100#{{1}}#70
Godsarxiogdongulus = E100#{{1}}#80
Godsarxieneningulus = E100#{{1}}#90
Godsarxihectgulus (Normally Blasphemorgulus) = E100#{{1}}#100
Multi-blasphemorgulus = E100#{{2}}#100
Power-blasphemorgulus = E100#{{3}}#100
Blasphemortethragulus = E100#{{4}}#100
Blasphemorpentacthulgulus = E100#{{5}}#100
Boliath = E100#{{#}}#10
Bolligog = E100#{{#}}#50
Godsbodgulus = E100#{{#}}#100
Blasphemorpopacthulgulus = E100#{{#}}#P where P is the world population right now
Grand godsbodgulus = E100#{{#}}#100#2
Godsbocrossgulus = E100#{{##}}#100
Godsbotopegulus = E100#{{#^#}}#100
Godsbo-tethrathoth-gulus = E100#{{#^^#}}#100
Godsbo-godsgodgulus-gulus = E100#{{#{#}#}}#100
Godsbo-godsbodgulus-gulus (Alternatively Godsdarxitrigulus) = E100#{{#{{#}}#}}#100 = E100{#, #, {#, #, #, 2}, 2}100
Godsdarxitet = E100#{{#{{#{{#}}#}}#}}#100
Godsdarxideck = E100#{{{1}}}#10
Trlasphemorgulus = E100#{{{1}}}#100
Godstrodgulus = E100#{{{#}}}#100
Ascended Googol (Normally Godgahlah) = E100(E[#]#)100
Ascended Googolplex (Normally Godgathor) = E100(E[#]#{#}2)100
Ascended Googolduplex (Normally Godtothol) = E100(E[#]#{#}3)100
Ascended Googoltriplex (Normally Godtertol) = E100(E[#]#{#}4)100
Ascended Grangol = E100(E[#]#{#}#)100
Gralhecatathol = E100(E[#]##{#}100)100
Thraelhecatathol = E100(E[#]###{#}100)100
Goddenhecatathol = E100(E[#]#{#}101)100
Goddohecatathol = E100(E[#]#{#}102)100
Goddekahecatathol = E100(E[#]#{#}110)100
God-icosahecatathol = E100(E[#]#{#}120)100
Godduhecatathol = E100(E[#]#{#}200)100
Godtruhecatathol = E100(E[#]#{#}300)100
Godtetrihecatathol = E100(E[#]#{#}400)100
Godpenhecatathol = E100(E[#]#{#}500)100
Godchilliathol = E100(E[#]#{#}#)1,000
Godmyriathol = E100(E[#]#{#}#)10,000
Godmegatathol = E100(E[#]#{#}#)1,000,000
Godgigatathol = E100(E[#]#{#}#)(E9)
Goddialogiathol = E100(E[#]#{#}#)(E1#2)
Godguppiathol = E100(E[#]#{#}#)(E20)
Godgobiathol = E100(E[#]#{#}#)(E35)
Godgogoliathol = E100(E[#]#{#}#)(E50)
God-ogoliathol = E100(E[#]#{#}#)(E80)
Godgoogliathol = E100(E[#]#{#}#)(E100)
Gralgoogliathol = E100(E[#]##{#}#)(E100)
Godgooglichimiathol = E100(E[#]#{#}#)(E1000)
Godgrangolathol = E100(E[#]#{#}#)(E100#100)
Godgreagolathol = E100(E[#]#{#}#)(E100#100#100)
Godgugoldathol = E100(E[#]#{#}#)(E100##100)
Godgugolthrathol = E100(E[#]#{#}#)(E100##100##100)
Godthroogolathol = E100(E[#]#{#}#)(E100###100)
Godtetroogolathol = E100(E[#]#{#}#)(E100####100)
Goddektoogolathol = E100(E[#]#{#}#)(E100(E[#]#)10)
Godgodgahlahathol = E100(E[#]#{#}#)(E100(E[#]#)100)
Godgridgahlahathol = E100(E[#]#{#}#)(E100(E[#]##)100)
Godgodgathorathol = E100(E[#]#{#}#)(E100(E[#]#{#}#)2)
Godgodtotholathol = E100(E[#]#{#}#)(E100(E[#]#{#}#)3)
Godgodtopolathol = E100(E[#]#{#}#)(E100(E[#]#{#}#)5)
Godgoddekatholathol = E100(E[#]#{#}#)10#2
Godgodhecatatholatholathol = E100(E[#]#{#}#)100#2
Godgodgoogliatholathol = E100(E[#]#{#}#)(E100)#2
Godgodgrangolatholathol = E100(E[#]#{#}#)(E100#100)#2
Godgodgugoldatholathol = E100(E[#]#{#}#)(E100##100)#2
Godgodgodgahlahatholathol = E100(E[#]#{#}#)1#3
Godgodgodgathoratholathol = E100(E[#]#{#}#)2#3
Godgodgoddekatholatholathol = E100(E[#]#{#}#)10#3
Godgodgodhecatatholatholathol = E100(E[#]#{#}#)100#3
Godgodgodgodgodhecatatholatholatholatholathol = E100(E[#]#{#}#)100#5
Godgodgodgodgodgodgodgodgodgodhecatatholatholatholatholatholatholatholatholatholathol = E100(E[#]#{#}#)100#10
Grangol-carta-ascengrangol = E100(E[#]#{#}#)100#100
Greagol-carta-ascengrangol = E100(E[#]#{#}#)100#100#100
Gugold-carta-ascengrangol = E100(E[#]#{#}#)100##100
Godgahlah-carta-ascengrangol = E100(E[#]#{#}#)100(E[#]#)100
Godgathor-carta-ascengrangol = E100(E[#]#{#}#)100(E[#]#{#}2)100
Ascengrangol-by-deuteron = E100(E[#]#{#}#)100(E[#]#{#}#)100
Ascengrangol-by-hyperion = E100(E[#]#{#}#)*#100
Ascengrangol-by-godgahlah = E100(E[#]#{#}#)*(E[#]#)100
Deutero-ascengrangol = E100(E[#]#{#}#)*(E[#]#{#}#)100
Ascengrangolfact = E100(E[E[#]#{#}#]#)100
Ascengrangolgridifact = E100(E[E[#]#{#}#]##)100
Ascengrangol-ipso-godgahlah = E100(E[E[#]#{#}#](E[#]#))100
Ascengrangol-ipso-godgathor = E100(E[E[#]#{#}#](E[#]#{#}2))100
Ascengrangolduliath = E100(E[E[#]#{#}#](E[#]#{#}#))100
Ascengrangoldeus = E100(E[E[#]#{#}#]#{#}#)100
Ascengrangoltruce = E100(E[E[E[#]#{#}#]#{#}#]#{#}#)100
Ascengrangolquad = E100(E[#]#{#}#)>#4
Ascengrangolquid = E100(E[#]#{#}#)>#5
Ascengrangoldeck = E100(E[#]#{#}#)>#10
Ascengrangolicose = E100(E[#]#{#}#)>#20
Ascengrangoliterator = E100(E[#]#{#}#)>#100
Ascengrangoliteratordeus = E100(E[E[#]#{#}#)>#]#{#}#)>#100
Ascengrangolgriditerator = E100(E[#]#{#}#)>##100
Ascengrangolgodgahlahator = E100(E[#]#{#}#)>(E[#]#)100
Ascengrangolgodgathorator = E100(E[#]#{#}#)>(E[#]#{#}2)100
Ascengrangoldustaculator = E100(E[#]#{#}#)>(E[#]#{#}#)100
Ascengrangoldustaculiterator = E100(E[#]#{#}#)>(E[#]#{#}#)>#100
Ascengrangoldustaculgodgahlahator = E100(E[#]#{#}#)>(E[#]#{#}#)>(E[#]#)100
Ascengrangoltristaculator = E100(E[#]#{#}##)3
Ascengrangolpentastaculator = E100(E[#]#{#}##)5
Ascengrangoldekastaculator = E100(E[#]#{#}##)10
Ascengrangolcross = E100(E[#]#{#}##)100
Ascengrangolitercross = E100(E[#]#{#}##)>#100
Ascengrangoldustaculcross = E100(E[#]#{#}##)>(E[#]#{#}##)100
Ascengrangolcubor = E100(E[#]#{#}###)100
Ascended googoldex = E100(E[#]#{#}1{#}2)100
Ascended googolplexidex = E100(E[#]#{#}2{#}2)100
Ascended googolquintiplexidex = E100(E[#]#{#}6{#}2)100
Ascended googoldeciplexidex = E100(E[#]#{#}11{#}2)100
Ascended grangoldex = E100(E[#]#{#}#{#}2)100
Ascended googoldudex = E100(E[#]#{#}1{#}2)100
Ascended googoldeciplexidudex = E100(E[#]#{#}11{#}2)100
Ascended grangoldudex = E100(E[#]#{#}#{#}3)100
Ascended grangoldecidex = E100(E[#]#{#}#{#}11)100
Ascended Greagol = E100(E[#]#{#}#{#}#)100
Ascended Gigangol = E100(E[#]#{#}#{#}#{#}#)100
Ascended Gorgegol = E100(E[#]#{#}#{#}#{#}#{#}#)100
Ascended Gulgol = E100(E[#]#{#}#{#}#{#}#{#}#{#}#)100
Ascended Gaspgol = E100(E[#]#{#}#{#}#{#}#{#}#{#}#{#}#)100
Ascended Ginorgol = E100(E[#]#{#}#{#}#{#}#{#}#{#}#{#}#{#}#)100
Ascended Gargantuul = E100(E[#]#{#}#{#}#{#}#{#}#{#}#{#}#{#}#{#}#)100
Ascended Googondol = E100(E[#]#{#}#{#}#{#}#{#}#{#}#{#}#{#}#{#}#{#}#)100
Ascended Googonkosol = E100(E[#]#{##}#)20
Ascended Googontritol = E100(E[#]#{##}#)30
Ascended Googonsartol = E100(E[#]#{##}#)40
Ascended Googonpetol = E100(E[#]#{##}#)50
Ascended Googonextol = E100(E[#]#{##}#)60
Ascended Googoneptol = E100(E[#]#{##}#)70
Ascended Googonogdol = E100(E[#]#{##}#)80
Ascended Googonentol = E100(E[#]#{##}#)90
Ascended Gugold = E100(E[#]#{##}#)100
Ascended Graatagold = E100(E[#]#{##}#{#}#)100
Ascended Gugolthra = E100(E[#]#{##}#{##}#)100
Ascended Gugoltesla = E100(E[#]#{##}#{##}#{##}#)100
Ascended Throogol = E100(E[#]#{###}#)100
Ascended Tetroogol = E100(E[#]#{####}#)100
Ascended Godgahlah (Alternatively deutero-ascended googol) = E100(E[#]#{#^#}#)100 = E100(E[#]#{E[#]#}#)100
Deutero-ascended Grangol = E100(E[#]#{E[#]#{#}#}#)100
Deutero-ascended Greagol = E100(E[#]#{E[#]#{#}#{#}#}#)100
Deutero-ascended Gugold = E100(E[#]#{E[#]#{##}#}#)100
Deutero-ascended Throogol = E100(E[#]#{E[#]#{###}#}#)100
Trito-ascended Googol = E100(E[#]#{E[#]#{E[#]#}#}#)100
Teterto-ascended Googol = E100/5
Pepto-ascended Googol = E100/6
Exto-ascended Googol = E100/7
Epto-ascended Googol = E100/8
Ogdo-ascended Googol = E100/9
Ento-ascended Googol = E100/10
Dekato-ascended Googol = E100/11
Isosto-ascended Googol = E100/21
Trianto-ascended Googol = E100/31
Saranto-ascended Googol = E100/41
Peninto-ascended Googol = E100/51
Exinto-ascended Googol = E100/61
Ebdominto-ascended Googol = E100/71
Ogdonto-ascended Googol = E100/81
Eneninto-ascended Googol = E100/91
Ascaniongulus = E100/100
Hecato-ascended Googol = E100/101
Ascanionguluschime = E1,000/1,000
Chillo-ascended Googol = E100/1,001
Ascaniongulustoll = E10,000/10,000
Ascaniongulusgong = E100,000/100,000
Mega-ascended Googol = E100/1,000,001
Ascaniongulus-sedeniad (Formerly ascaniongulus-sedenia) = E(10^16)/(10^16)
Googol-ex-ascended googol = E100/(1+E100)
Grangol-ex-ascended googol = E100/(1+E100#100)
Greagol-ex-ascended googol = E100/(1+E100#100#100)
Gorgegol-ex-ascended googol = E100/(1+E100##5)
Googondol-ex-ascended googol = E100/(1+E100##10)
Gugold-ex-ascended googol = E100/(1+E100##100)
Gugolthra-ex-ascended googol = E100/(1+E100##100##100)
Throogol-ex-ascended googol = E100/(1+E100###100)
Tetroogol-ex-ascended googol = E100/(1+E100####100)
Godgahlah-ex-ascended googol = E100/(1+E100#^#100)
Gridgahlah-ex-ascended googol = E100/(1+E100#^##100)
Godgathor-ex-ascended googol = E100/(1+E100#^#^#100)
Godtothol-ex-ascended googol = E100/(1+E100#^#^#^#100)
Tethrathoth-ex-ascended googol = E100/(1+E100#^^#100)
Tethriterator-ex-ascended googol = E100/(1+E100#^^#>#100)
Tethracross-ex-ascended googol = E100/(1+E100#^^##100)
Tethratope-ex-ascended googol = E100/(1+E100#^^#^#100)
Pentacthulhum-ex-ascended googol = E100/(1+E100#^^^#100)
Hexacthulhum-ex-ascended googol = E100/(1+E100#^^^^#100)
Godsgodgulus-ex-ascended googol = E100/(1+E100#{#}#100)
Centurion-ex-ascended googol = E100/(1+E100#{#^#}#100)
Ohmygosh-ohmygosh-ohmygooosh-ex-ascended googol = E100/(1+E100#{#{#}#}#100)
Blasphemorgulus-ex-ascended googol = E100/(1+E100#{{1}}#100)
Ascended-graatagold-ex-ascended googol = E100/(1+E100(E[#]#{##}#{#}#)100)
Ascended-greegold-ex-ascended googol = E100/(1+E100(E[#]#{##}#{#}#{#}#)100)
Ascended-gugolthra-ex-ascended googol = E100/(1+E100(E[#]#{##}#{##}#)100)
Ascended-throogol-ex-ascended googol = E100/(1+E100(E[#]#{###}#)100)
Two-ex-ascended-googol-ex-ascended googol = E100/(1+E100/3)
Three-ex-ascended-googol-ex-ascended googol = E100/(1+E100/4)
Five-ex-ascended-googol-ex-ascended googol = E100/(1+E100/6)
Ten-ex-ascended-googol-ex-ascended googol = E100/(1+E100/11)
Great and ascended googol (Alternatively grand ascaniongulus or ascaniongulus-minus-one-ex-ascended googol) = E100/100#2
Hundred-ex-ascended-googol-ex-ascended googol = E100/(1+E100/101)
Thousand-ex-ascended-googol-ex-ascended googol = E100/(1+E100/1,001)
Myriad-ex-ascended-googol-ex-ascended googol = E100/(1+E100/10,001)
Octad-ex-ascended-googol-ex-ascended googol = E100/(1+E100/100,000,001)
Sedeniad-ex-ascended-googol-ex-ascended googol = E100/(1+E100/(1+E16))
Googol-ex-ascended-googol-ex-ascended googol = E100/(1+E100/(1+E100))
Ascended-googol-ex-ascended-googol-ex-ascended googol = E100/(1+E100/(1+E100/2))
Two-ex-ascended-googol-ex-ascended-googol-ex-ascended googol = E100/(1+E100/(1+E100/3))
Ten-ex-ascended-googol-ex-ascended-googol-ex-ascended googol = E100/(1+E100/(1+E100/11))
Two-ex-great-and-ascended googol (Alternatively two-ex-grand ascaniongulus) = E100/100#3
Three-ex-grand ascaniongulus = E100/100#4
Five-ex-grand ascaniongulus = E100/100#6
Ten-ex-grand ascaniongulus = E100/100#11
Grangol-carta-ascaniongulus = E100/100#100
Hundred-ex-grand ascaniongulus = E100/100#101
Greagol-carta-ascaniongulus = E100/100#100#100
Gugold-carta-ascaniongulus = E100/100##100
Throogol-carta-ascaniongulus = E100/100###100
Godgahlah-carta-ascaniongulus = E100/100#^#100
Godgathor-carta-ascaniongulus = E100/100#^#^#100
Tethrathoth-carta-ascaniongulus = E100/100#^^#100
Pentacthulhum-carta-ascaniongulus = E100/100#^^^#100
Godsgodgulus-carta-ascaniongulus = E100/100#{#}#100
Blasphemorgulus-carta-ascaniongulus = E100/100#{{1}}#100
Ascended-godgahlah-carta-ascaniongulus = E100/100(E[#]#{#^#}#)100
Ascended-tethrathoth-carta-ascaniongulus = E100/100(E[#]#{#^^#}#)100
Ascaniongulus-by-deuteron = E100/100/100
Ascaniongulus-by-triton = E100/100/100/100
Ascaniongulus-by-teterton = E100/#5
Ascaniongulus-by-dekaton = E100/#11
Ascaniongulus-by-isoston = E100/#21
Ascanigoldgulus (Alternatively ascaniongulus-by-hyperion) = E100/#100
Ascanithroogulus (Alternatively ascaniongulus-by-deutero-hyperion) = E100/##100
Ascaniongulus-by-godgahlah = E100/(#^#)100
Ascaniongulus-by-tethrathoth = E100/(#^^#)100
Ascaniongulus-by-pentacthulhum = E100/(#^^^#)100
Ascaniongulus-by-ascended-gugold = E100/(E[#]#{##}#)100
Deutero-ascaniongulus = E100//100
Trito-ascaniongulus = E100///100
Teterto-ascaniongulus = E100////100
Pepto-ascaniongulus = E100/////100
Dekato-ascaniongulus = E100/^#10
Isosto-ascaniongulus = E100/^#20
Trianto-ascaniongulus = E100/^#30
Saranto-ascaniongulus = E100/^#40
Peninto-ascaniongulus = E100/^#50
Exinto-ascaniongulus = E100/^#60
Ebdominto-ascaniongulus = E100/^#70
Ogdonto-ascaniongulus = E100/^#80
Eneninto-ascaniongulus = E100/^#90
Ascaniongulfact = E100/^#100
Ascaniongulgridifact = E100/^##100
Ascaniongulus-ipso-godgahlah = E100/^#100
Ascaniongulus-ipso-tethrathoth = E100/^#^^#100
Dutetrated-ascaniongulus = E100/^/100
Tritetrated-ascaniongulus = E100/^/^/100
Terrible ascaniongulus = E100/^^#100
Horrible ascaniongulus = E100/^^^#100
Horrendous ascaniongulus = E100/^^^^#100
Godsgorrendous ascaniongulus = E100/{#}#100
Ascended Ascaniongulus = E100(E[/]/{/}/)100
Deutero-ascended Ascaniongulus = E100(E[/]/{E[/]/{/}/}/)100
Trito-ascended Ascaniongulus = E100(E[/]/{E[/]/{E[/]/{/}/}/}/)100
Warning: Since #xE+ and beyond are not defined yet, these numbers are ill-defined.
Teterto-ascended Ascaniongulus = E100/_(2)5
Pepto-ascended Ascaniongulus = E100/_(2)6
Dekato-ascended Ascaniongulus = E100/_(2)11
Isosto-ascended Ascaniongulus = E100/_(2)21
Peninto-ascended Ascaniongulus = E100/_(2)51
Ascanidiongulus = E100/_(2)100
Ascended Ascanidiongulus = E100(E[/_(2)]/_(2){/_(2)}/_(2))100
Ascanitriongulus = E100/_(3)100
Ascanitetriongulus = E100/_(4)100
Ascanipentiongulus = E100/_(5)100
Ascanideckiongulus = E100/_(10)100
Ascanihyperiongulus = E100/_(#)100
Ascani-godgahlah-gulus = E100/_(#^#)100
Ascani-godgathor-gulus = E100/_(#^#^#)100
Ascani-tethrathoth-gulus = E100/_(#^^#)100
Ascani-pentacthulhum-gulus = E100/_(#^^^#)100
Ascani-ascended-gugold-gulus = E100/_(E[#]#{##}#)100
Ascani-ascaniongulus-gulus (Alternatively Dustaculated-ascaniongulus) = E100/_(/)100
Tristaculated-ascaniongulus = E100/_(/_(/))100
Tetrastaculated-ascaniongulus = E100/_(/_(/_(/)))100
Dekastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))100
Icosastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))))))))))))100
Triantastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 30 /'s
Terantastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 40 /'s
Penantastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 50 /'s
Exatastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 60 /'s
Eptatastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 70 /'s
Ogdatastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 80 /'s
Enenintastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 90 /'s
Hecatastaculated-ascaniongulus = E100/_(/_(/_(/_(/_(/_(/_(/_(/_(/_(.../_(/_(/_(/_(/_(/_(/_(/_(/_(/)))))))))...))))))))))100 with 100 /'s
Second Ascaniongulus (Alternatively Hecatastaculated-ascaniongulus) = E100[\2]100
Dustaculated-second-ascaniongulus = E100[\2]_([\2])100
Tristaculated-second-ascaniongulus = E100[\2]_([\2]_([\2]))100
Pentastaculated-second-ascaniongulus = E100[\2]_([\2]_([\2]_([\2]_([\2]))))100
Dekastaculated-second-ascaniongulus = E100[\2]_([\2]_([\2]_([\2]_([\2]_([\2]_([\2]_([\2]_([\2]_([\2])))))))))100
Third ascaniongulus = E100[\3]100
Fourth ascaniongulus = E100[\4]100
Fifth ascaniongulus = E100[\5]100
Sixth ascaniongulus = E100[\6]100
Seventh ascaniongulus = E100[\7]100
Eighth ascaniongulus = E100[\8]100
Ninth ascaniongulus = E100[\9]100
Tenth ascaniongulus = E100[\10]100
Twentieth ascaniongulus = E100[\20]100
Thirtieth ascaniongulus = E100[\30]100
Fortieth ascaniongulus = E100[\40]100
Fiftieth ascaniongulus = E100[\50]100
Sixtieth ascaniongulus = E100[\60]100
Seventieth ascaniongulus = E100[\70]100
Eightieth ascaniongulus = E100[\80]100
Nintieth ascaniongulus = E100[\90]100
Hypered ascaniongulus (Alternatively Hundredth ascaniongulus) = E100[\#]100
Di-hypered ascaniongulus = E100[\(#+#)]100
Grid-hypered ascaniongulus = E100[\##]100
Godgahlah-ranked-ascaniongulus = E100[\(#^#)]100
Gridgahlah-ranked-ascaniongulus = E100[\(#^##)]100
Godgathor-ranked-ascaniongulus = E100[\(#^#^#)]100
Godgathorfact-ranked-ascaniongulus = E100[\(#^(#^#*#))]100
Godgathordeus-ranked-ascaniongulus = E100[\(#^(#^#*#^#))]100
Gralgathor-ranked-ascaniongulus = E100[\(#^#^##)]100
Godtothol-ranked-ascaniongulus = E100[\(#^#^#^#)]100
Tethrathoth-ranked-ascaniongulus = E100[\(#^^#)]100
Tethriterator-ranked-ascaniongulus = E100[\(#^^#>#)]100
Tethracross-ranked-ascaniongulus = E100[\(#^^##)]100
Tethratope-ranked-ascaniongulus = E100[\(#^^#^#)]100
Pentacthulhum-ranked-ascaniongulus = E100[\(#^^^#)]100
Hexacthulhum-ranked-ascaniongulus = E100[\(#^^^^#)]100
Godsgodgulus-ranked-ascaniongulus = E100[\(#{#}#)]100
Ascended-gugold-ranked-ascaniongulus = E100[\(E[#]#{##}#)]100
Deutero-ascended-googol-ranked-ascaniongulus = E100[\(E[#]#{E[#]#}#)]100
Deuteranked Ascaniongulus = E100[\/]100
Tritoranked Ascaniongulus = E100[\[\/]]100
Tetertoranked Ascaniongulus = E100[\[\[\/]]]100
Peptoranked Ascaniongulus = E100[\[\[\[\/]]]]100
Dekatoranked Ascaniongulus = E100[\\]9
The Dual Wield = E100[\\]100
The Trial Wield = E100[\\\]100
The Quadruple Wield = E100[\\\\]100
The Quintuple Wield = E100[\\\\\]100
The Dektuple Wield = E100[\\\\\\\\\\]100
The Hyperuple Wield = E100[[\_(2)2]]100
The Dual 2-wield = E100[[\_(2)\_(2)]]100
The Trial 2-wield = E100[[\_(2)\_(2)\_(2)]]100
The Quadruple 2-wield = E100[[[\_(3)2]]]4
The Quintuple 2-wield = E100[[[\_(3)2]]]5
The Dektuple 2-wield = E100[[[\_(3)2]]]10
The Hyperuple 2-wield = E100[[[\_(3)2]]]100
The Hyperuple 3-wield = E100[[[[\_(4)2]]]]100
The Hyperwield = E100[\_(#)]100
The Deuterhyperwield = E100[\_(#+#)]100
The Gridihyperwield = E100[\_(##)]100
Godgahlah-hyperwield = E100[\_(#^#)]100
Godgathor-hyperwield = E100[\_(#^#^#)]100
Tethrathoth-hyperwield = E100[\_(#^^#)]100
Pentacthulhum-hyperwield = E100[\_(#^^^#)]100
Godsgodgulus-hyperwield = E100[\_(#{#}#)]100
Godsarxitrigulus-hyperwield = E100[\_(#{#{#}#}#)]100
Ascended-throogol-hyperwield = E100[\_(E[#]#{###}#)]100
Ascaniongulus-hyperwield = E100[\_(/)]100
Dustaculated-hyperwield = E100[\_(\)]100
Tristaculated-hyperwield = E100[\_(\_(\))]100
Tetrastaculated-hyperwield = E100[\_(\_(\_(\)))]100
Pentastaculated-hyperwield = E100[\_(\_(\_(\_(\))))]100
Dekastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))]100
Icosastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))))))))))))]100
Triantastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 30 \'s
Sarantastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 40 \'s
Penantastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 50 \'s
Exantastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 60 \'s
Ebdomintastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 70 \'s
Ogdontastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 80 \'s
Enenintastaculated-hyperwield = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 90 \'s
The next level (Alternatively Hecatastaculated-hyperwield) = E100[\_(\_(\_(\_(\_(\_(\_(\_(\_(\_(...\_(\_(\_(\_(\_(\_(\_(\_(\_(\)))))))))...))))))))))]100 with 100 \'s
I've seen many people make interesting series of numbers, so I decided to make my own, too.
Dust = 0.0016
Locked Door = 19
Line to Circle = 60,112^π
Circle to Sphere = (Line to Circle)^12,932
Sphere to Sphessact = (Cricle to Sphere)^^^44
Sphesseract to Spenteract = (Sphere to Sphesseract){5914}56432
Spenteract to Spinfinity = f_ε1(Sphesseract to Spenteract)
Beyond Spinfinity = s(Spenteract to Spinfinity, (Sphesseract to Spenteract)^(Locked Door) {1,,,,,,,,,,,,,,,,...,,,,,,,,,,,,,,,2} 2) where there are Line to Circle commas in {}'s
Only 1% can guess the next letter = 420[69{1337}69]420 in Username5243's Array Notation
No one can reach pink = 69420(((1337)(420))(69))(42069) in Numbers in Brackets Notation (Notation created by YouTuber Guest)
This game is impossible = 420[420{69/69/69}420]420 in DeepLineMadom's Array Notation
Don't say the same thing as me, "Impossible" edition = {1337, 1337 [69 [420 ~ 1337] 420] 420} in Bird's Array Notation
Ultimate Absolute F.I.N.A.L godly E...N...D...I...N...G infinite ominous death screen = 6969[&&5] in Ampersand Notation
grangol*grangol M.E.T.A.C.H.E.S.S = Egrangol#^^^^#>(#^#^#*#^#####*#^#+#^###+###+#)grangol in Extended Cascading-E Notation
Error generator = {L666, X^3}_404,404 in BEAF
Copypaste.exe has stopped working = (Error generator)[(Error generator)[(Error generator)[...(Error generator)[(Error generator)[(Error generator)[This game is impossible]]]...]]] with Don't say the same thing as me "Impossible" edition []'s, in Copy Notation
This castle is collapsing = E(Spenteract to spinfinity)#{&###}#(Sphesseract to spenteract) in Collapsing-E Notation
Protect your number, keep it = (Line to circle)$[[0]_[0]] in Dollar function
A glass of infinity = 50,000![1]w(353)/[1(50)2] in Hyperfactorial Array Notation
Grahal-th grade = [10, 10 {1} Grahal] in Graham Array Notation
The step squad = 100(99)(98)(97)(96)(95)...(5)(4)3 in Hayden's Array Notation
The staircase of ascension = E100(E[#]#{E[#]#{E[#]#{E[#]#{...E[#]#{E[#]#{E[#]#{E[#]#{#^#}2}3}4}5...}96}97}98}99)100 in Ascending-E Notation
Don't trust everyone on an abandoned street = 666donttrusteveryoneonanabandonedstreet in Letter Notation
Still not fast enough = /0,0,Gooblol in Lightspeed Slash Notation
Gobbled up = #[[[@]]]{0:0:4}((66))*3 in Pound-Star Notation
Health Insurance = 3.16*10^4,942 in Scientific Notation
Turn off the refrigerator! = Q<10, 10, 0, 0, 100> in Quick Array Notation
Fast and furious = f_ω^6*9+ω^4*20(1337) in Fast-growing Hierarchy
Come on, it's not hard; it's just hardy = H_ω^ω+ω^3(40) in Hardy Hierarchy
Slow down! = g_BHO(69420) in Slow-growing Hierarchy, where BHO is the Bachmann-Howard Ordinal
It's expandal, not expansional = 2[2[2[...2[2[2[5]]]...]]] with Moser []'s, in Steinhaus-Moser Notation
Reuse your stuff = {Circle to Sphere, Beyond Spinfinity ///////////////////// Copypaste.exe has stopped working}*(Locked Door)+Dust
'cause training season's over = Reuse your stuff^^^^^^^^^^^(Dust^(-1))
I may be crazy, don't mind me = ('cause training season's over){'cause training season's over}999999
You ain't got knows = {(I may be crazy, don't mind me), Circle to Sphere, 1, 1, 9}
Memories bring back you = {You ain't got knows, Slow down! (1) 4}
I see danger in your eyes = {Memories bring back you, (It's expandal, not expansional) (3)(3) 2}
Turi ip ip ip = {I see danger in your eyes, Reuse your stuff (0, 3) 2}
It's hard to breathe, but that's alright = {Turi ip ip ip, This castle is collapsing (((0, 1) 0, 1) 6, 5, 5) 2}
Time is barely on our side = X^^(Grahal-th grade) & (It's hard to breathe, but that's alright)
We are heroes tonight = {Time is barely on our side, 3 / 2}
We aren't pixels on a screen = {We are heroes tonight, Sphesseract to Spenteract / 2}
Your fingertips are drifting away = {We aren't pixels on a screen, Slow Down! /////// 352335}
Steady increasing the commas = {L2, 1}_(Your fingertips are drifting away, Bukuwaha)
I love it when you call me señorita = {LX, 4}_(Steady increasing the commas, The step squad)
Deep in the dark = {LLLLLLLLLL(X^^X), X}_(I love it when you call me señorita, A glass of infinity)
Hold tight, hold tight, hold tight = {L & L, 1}_(Deep in the dark, 69420)
On the dance floor = {{{L, L / 2}, 1}_(L, L), 1}_((Hold tight, hold tight, hold tight),(Hold tight, hold tight, hold tight))
I know where we can go = {{{...{{{{L, L / 2}, 1}_(L, L), 1}_(L, L), 1}_(L, L), 1...}_(L, L), 1}_(L, L), 1}_(On the dance floor, On the dance floor) where there are On the dance floor L's in total
Tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar tar! = Tar^I know where we can go(I know where we can go)
Wake up! = E44,435,622(E[#]#{####}#)44,435,622
It's time to go! = E44,435,622(E[#]#{E[#]#{###}#}#)44,435,622
Can you jump down by 44,435,622 steps? = E44,435,622/699
Of course, I can jump down by 44,435,622 steps! = E44,435,622/(Can you jump down by 44,435,622 steps?) = E44,435,622/699#2
WAIT, NO, I WAS KIDD- woah! = E44,435,622///44,435,622
Ok, now let's call a taxi and go to the airport. = E44,435,622(E[/]/{/}/)444,443,356,562,222
Taxi driver: That's 10$. = E44,435,622/_(2)44,435,622
Airport worker: It's 100$ per ticket, how many people? = E44,435,622/_(##)44,435,622
We'll go as 2 people. = E44,435,622/_(/)44,435,622
Enjoy! = E44,435,622/_(/_(/))44,435,622
Ok, let's go to the plane! = E44,435,622[\2]44,435,622
Pilot: We'll go in 60 seconds. = E44,435,622[\3]44,435,622
The flight started! = E44,435,622[\#]44,435,622
Hey! Look! It's a straight river! = E44,435,622[\/]44,435,622
Oh, we crossed the border! = E44,435,622[\\]44,435,622
Pilot: Some food will be served right now. Enjoy! = E44,435,622[\\\]44,435,622
Aaaaaahhh, we're crossing an ocean! = E44,435,622[[\_(2)2]]44,435,622
Pilot: We landed! = E44,435,622[\_(#)]44,435,622
Phew, we're back home, nice! = E44,435,622[\_(\)]44,435,622
HA! I reverted your edits! = (Wake up!)^(-1)
Haha, I'm not joking! = (It's time to go!)^(-2)
Then why are you laughing? = (Can you jump by 44,435,622 steps?)^(-5)
I'm laughing at you! XD = (Of course, I can jump by 44,435,622 steps!)^(-10)
Stop, you're nonsense. = (WAIT, NO, I WAS KIDD- woah!)^(-100)
Oh, I need to go for dinner. You lo- I mean you win :/ = (I know where we can go)^(-(10^100))
Wait, no, it's coming! = (Oh, I need to go for dinner. You lo- I mean you win :/)^10^10^100
AAAAAAAAHHHHHH ITS THE END OF THIS SER-*CONNECTION LOST* = ..."The largest number definable by using no more than "The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol" symbols in some K("The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol") system in some K2("The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol") 3-system in some ... in some K"The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol"("The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol") "The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number t can be represented by one symbol"-system where the number "The largest number definable by using no more than "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" symbols in some K("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") system in some K2("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 2-system in some K3("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") 3-system ... in some K"The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"("The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol") "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol"-system where the number "The largest number definable by using no more than Utter Oblivion symbols in some K(Utter Oblivion) system in some K2(Utter Oblivion) 2-system in some K3(Utter Oblivion) 3-system ... in some KUtter Oblivion(Utter Oblivion) Utter Oblivion-system where the number Utter Oblivion can be represented by one symbol" can be represented by one symbol" can be represented by one symbol"... Where there are oblivion layers
SLEEPJOBGANG1.EXE HAS STOPPED WORKING. PLEASE USE SLEEPJOBGANG2.EXE INSTEAD. = L(10, 100) where L(x, y) is the largest number definable by using no more than x symbols in some K(x) system in some K2(x) 2-system in some K3(x) 3-system in some ... in some Ky(x) y-system where the number x can be represented by one symbol
Class 0 gathering = 1+2+3+4+5+6 = 21
Class 1 gathering = (10^12-6^2+10^6+6)/2 = 500000499985
Class 2 gathering = (10^(10^6*2)-10^12+10^10^6+10^6)/2 ≈ 5*101999999
Class 3 gathering = (10^(10^10^6*2)-10^(10^6*2)+10^10^10^6+10^10^6)/2
Class 4 gathering = (10^(10^10^10^6*2)-10^(10^10^6*2)+10^10^10^10^6+10^10^10^6)/2
Class 5 gathering = (10^(10^10^10^10^6*2)-10^(10^10^10^6*2)+10^10^10^10^10^6+10^10^10^10^6)/2
Tetration level gathering = ((10^^10^^10)^2-10^(10^10^10^10^6*2)+10^^10^^10+10^10^10^10^10^6)/2
Up-arrow notation level gathering = ((f_ω(f_3(10)))^2-(10^^10^^10)^2+f_ω(f_3(10))+10^^10^^10)/2
Linear omega level gathering = ((f_ω^2(f_3(10)))^2-(f_ω(f_3(10)))^2+f_ω^2(f_3(10))+f_ω(f_3(10)))/2
Quadratic omega level gathering = ((f_ω^3(f_3(10)))^2-(f_ω^2(f_3(10)))^2+f_ω^3(f_3(10))+f_ω^2(f_3(10)))/2
Polynomial omega level gathering = ((f_ω^ω(f_3(10)))^2-(f_ω^3(f_3(10)))^2+f_ω^ω(f_3(10))+f_ω^3(f_3(10)))/2
These are inspired by Saibian's power towers of 10's.
"Expanxis" is pronounced "eks-PANK-sis".
Mono-expanxis (Normally ten) = 10{{1}}1 = 10
Dia-expanxis (Nomally Tridecal) = 10{{1}}2 = 10{10}10
Tria-expanxis (Normally Tridecalplex) = 10{{1}}3 = 10{10{10}10}10
Tetra-expanxis (Normally Tridecalduplex) = 10{{1}}4 = 10{10{10{10}10}10}10
Penta-expanxis (Normally Tridecaltriplex) = 10{{1}}5 = 10{10{10{10{10}10}10}10}10
Hexa-expanxis = 10{{1}}6
Hepta-expanxis = 10{{1}}7
Octa-expanxis = 10{{1}}8
Enna-expanxis = 10{{1}}9
Deka-expanxis (Alternatively Dia-multiexpanxis or Monologia-expanxis) = 10{{1}}10 = {{2}}2
Icosa-expanxis = 10{{1}}20
Trianta-expanxis = 10{{1}}30
Teranta-expanxis = 10{{1}}40
Penanta-expanxis = 10{{1}}50
Exata-expanxis = 10{{1}}60
Eptata-expanxis = 10{{1}}70
Ogdata-expanxis = 10{{1}}80
Entata-expanxis = 10{{1}}90
Hecta-expanxis (Normally Corporal) = 10{{1}}100
Monologia-expanxis (Alternatively Dia-multiexpanxis or Deka-expanxis) = 10{{1}}10^^1 = 10{{1}}10
Dialogia-expanxis = 10{{1}}10^^2
Trialogia-expanxis = 10{{1}}10^^3
Tetralogia-expanxis = 10{{1}}10^^4
Pentalogia-expanxis = 10{{1}}10^^5
Hexalogia-expanxis = 10{{1}}10^^6
Heptalogia-expanxis = 10{{1}}10^^7
Octalogia-expanxis = 10{{1}}10^^8
Ennalogia-expanxis = 10{{1}}10^^9
Dekalogia-expanxis = 10{{1}}10^^10
Icosalogia-expanxis = 10{{1}}10^^20
Triantalogia-expanxis = 10{{1}}10^^30
Terantalogia-expanxis = 10{{1}}10^^40
Penantalogia-expanxis = 10{{1}}10^^50
Exatalogia-expanxis = 10{{1}}10^^60
Eptatalogia-expanxis = 10{{1}}10^^70
Ogdatalogia-expanxis = 10{{1}}10^^80
Entatalogia-expanxis = 10{{1}}10^^90
Hectalogia-expanxis = 10{{1}}10^^100
Chilialogia-expanxis = 10{{1}}10^^1,000
Megalogia-expanxis = 10{{1}}10^^1,000,000
Gigalogia-expanxis = 10{{1}}10^^10^9
Teralogia-expanxis = 10{{1}}10^^10^12
Sedeniadalogia-expanxis = 10{{1}}10^^10^16
Mono-taxia-expanxis = 10{{1}}10^^^1
Dia-taxia-expanxis = 10{{1}}10^^^2
Tria-taxia-expanxis = 10{{1}}10^^^3
Tetra-taxia-expanxis = 10{{1}}10^^^4
Penta-taxia-expanxis = 10{{1}}10^^^5
Hexa-taxia-expanxis = 10{{1}}10^^^6
Hepta-taxia-expanxis = 10{{1}}10^^^7
Octa-taxia-expanxis = 10{{1}}10^^^8
Enna-taxia-expanxis = 10{{1}}10^^^9
Deka-taxia-expanxis = 10{{1}}10^^^10
Icosa-taxia-expanxis = 10{{1}}10^^^20
Trianta-taxia-expanxis = 10{{1}}10^^^30
Teranta-taxia-expanxis = 10{{1}}10^^^40
Penanta-taxia-expanxis = 10{{1}}10^^^50
Exata-taxia-expanxis = 10{{1}}10^^^60
Eptata-taxia-expanxis = 10{{1}}10^^^70
Ogdata-taxia-expanxis = 10{{1}}10^^^80
Entata-taxia-expanxis = 10{{1}}10^^^90
Hecta-taxia-expanxis = 10{{1}}10^^^100
Chilia-taxia-expanxis = 10{{1}}10^^^1,000
Mega-taxia-expanxis = 10{{1}}10^^^1,000,000
Giga-taxia-expanxis = 10{{1}}10^^^10^9
Tera-taxia-expanxis = 10{{1}}10^^^10^12
Sedeniada-taxia-expanxis = 10{{1}}10^^^10^16
Mono-petaxia-expanxis = 10{{1}}10^^^^1
Dia-petaxia-expanxis = 10{{1}}10^^^^2
Tria-petaxia-expanxis = 10{{1}}10^^^^3
Tetra-petaxia-expanxis = 10{{1}}10^^^^4
Penta-petaxia-expanxis = 10{{1}}10^^^^5
Hexa-petaxia-expanxis = 10{{1}}10^^^^6
Hepta-petaxia-expanxis = 10{{1}}10^^^^7
Octa-petaxia-expanxis = 10{{1}}10^^^^8
Enna-petaxia-expanxis = 10{{1}}10^^^^9
Deka-petaxia-expanxis = 10{{1}}10^^^^10
Hecta-petaxia-expanxis = 10{{1}}10^^^^100
Deka-exaxia-expanxis = 10{{1}}10{5}10
Deka-eptaxia-expanxis = 10{{1}}10{6}10
Deka-octaxia-expanxis = 10{{1}}10{7}10
Deka-ennaxia-expanxis = 10{{1}}10{8}10
Deka-dekaxia-expanxis = 10{{1}}10{9}10
Deka-icosaxia-expanxis = 10{{1}}10{19}10
Deka-triantaxia-expanxis = 10{{1}}10{29}10
Deka-terantaxia-expanxis = 10{{1}}10{39}10
Deka-penantaxia-expanxis = 10{{1}}10{49}10
Deka-exataxia-expanxis = 10{{1}}10{59}10
Deka-eptataxia-expanxis = 10{{1}}10{69}10
Deka-ogdataxia-expanxis = 10{{1}}10{79}10
Deka-entataxia-expanxis = 10{{1}}10{89}10
Deka-hectaxia-expanxis = 10{{1}}10{99}10
Dia-expanxia-expanxis (Alternatively Tridecaldex) = 10{{1}}10{10}10 = {10, Tridecal, 1, 2}
Tria-expanxia-expanxis = 10{{1}}10{{1}}3
Tetra-expanxia-expanxis = 10{{1}}10{{1}}4
Penta-expanxia-expanxis = 10{{1}}10{{1}}5
Hexa-expanxia-expanxis = 10{{1}}10{{1}}6
Hepta-expanxia-expanxis = 10{{1}}10{{1}}7
Octa-expanxia-expanxis = 10{{1}}10{{1}}8
Enna-expanxia-expanxis = 10{{1}}10{{1}}9
Deka-expanxia-expanxis (Alternatively Tria-multiexpanxis) = 10{{1}}10{{1}}10 = 10{{2}}3
Icosa-expanxia-expanxis = 10{{1}}10{{1}}20
Trianta-expanxia-expanxis = 10{{1}}10{{1}}30
Teranta-expanxia-expanxis = 10{{1}}10{{1}}40
Penanta-expanxia-expanxis = 10{{1}}10{{1}}50
Exata-expanxia-expanxis = 10{{1}}10{{1}}60
Eptata-expanxia-expanxis = 10{{1}}10{{1}}70
Ogdata-expanxia-expanxis = 10{{1}}10{{1}}80
Entata-expanxia-expanxis = 10{{1}}10{{1}}90
Hecta-expanxia-expanxis (Normally Corporalplex) = 10{{1}}10{{1}}100
Dia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}2
Tria-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}3
Tetra-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}4
Penta-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}5
Hexa-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}6
Hepta-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}7
Octa-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}8
Enna-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}9
Deka-expanxia-expanxia-expanxis (Alternatively Tetra-multiexpanxis) = 10{{1}}10{{1}}10{{1}}10 = 10{{2}}4
Dia-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}2
Tria-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}3
Tetra-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}4
Penta-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}5
Hexa-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}6
Hepta-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}7
Octa-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}8
Enna-expanxia-expanxia-expanxia-expanxis = 10{{1}}10{{1}}10{{1}}10{{1}}9
Deka-expanxia-expanxia-expanxia-expanxis (Alternatively Penta-multiexpanxis) = 10{{1}}10{{1}}10{{1}}10{{1}}10 = 10{{2}}5
Mono-multiexpanxis = 10{{2}}1
Dia-multiexpanxis = 10{{2}}2
Tria-multiexpanxis = 10{{2}}3
Tetra-multiexpanxis = 10{{2}}4
Penta-multiexpanxis = 10{{2}}5
Hexa-multiexpanxis = 10{{2}}6
Hepta-multiexpanxis = 10{{2}}7
Octa-multiexpanxis = 10{{2}}8
Enna-multiexpanxis = 10{{2}}9
Deka-multiexpanxis = 10{{2}}10
Icosa-multiexpanxis = 10{{2}}20
Trianta-multiexpanxis = 10{{2}}30
Teranta-multiexpanxis = 10{{2}}40
Penanta-multiexpanxis = 10{{2}}50
Exata-multiexpanxis = 10{{2}}60
Eptata-multiexpanxis = 10{{2}}70
Ogdata-multiexpanxis = 10{{2}}80
Entata-multiexpanxis = 10{{2}}90
Hecta-multiexpanxis (Normally Mulporal) = 10{{2}}100
Chilia-multiexpanxis = 10{{2}}1,000
Mega-multiexpanxis = 10{{2}}1,000,000
Giga-multiexpanxis = 10{{2}}10^9
Tera-multiexpanxis = 10{{2}}10^12
Sedeniada-multiexpanxis = 10{{2}}10^16
Dekalogia-multiexpanxis = 10{{2}}10^^10
Deka-taxia-multiexpanxis = 10{{2}}10{3}10
Deka-petaxia-multiexpanxis = 10{{2}}10{4}10
Deka-exaxia-multiexpanxis = 10{{2}}10{5}10
Deka-eptaxia-multiexpanxis = 10{{2}}10{6}10
Deka-ogdaxia-multiexpanxis = 10{{2}}10{7}10
Deka-ennaxia-multiexpanxis = 10{{2}}10{8}10
Deka-dekaxia-multiexpanxis = 10{{2}}10{9}10
Deka-icosaxia-multiexpanxis = 10{{2}}10{19}10
Deka-triantaxia-multiexpanxis = 10{{2}}10{29}10
Deka-terantaxia-multiexpanxis = 10{{2}}10{39}10
Deka-penantaxia-multiexpanxis = 10{{2}}10{49}10
Deka-exataxia-multiexpanxis = 10{{2}}10{59}10
Deka-eptataxia-multiexpanxis = 10{{2}}10{69}10
Deka-ogdataxia-multiexpanxis = 10{{2}}10{79}10
Deka-entataxia-multiexpanxis = 10{{2}}10{89}10
Deka-hectaxia-multiexpanxis = 10{{2}}10{99}10
Dia-expanxia-multiexpanxis = 10{{2}}10{{1}}2
Tria-expanxia-multiexpanxis = 10{{2}}10{{1}}3
Tetra-expanxia-multiexpanxis = 10{{2}}10{{1}}4
Penta-expanxia-multiexpanxis = 10{{2}}10{{1}}5
Hexa-expanxia-multiexpanxis = 10{{2}}10{{1}}6
Hepta-expanxia-multiexpanxis = 10{{2}}10{{1}}7
Octa-expanxia-multiexpanxis = 10{{2}}10{{1}}8
Enna-expanxia-multiexpanxis = 10{{2}}10{{1}}9
Deka-expanxia-multiexpanxis = 10{{2}}10{{1}}10
Dia-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}2
Tria-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}3
Tetra-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}4
Penta-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}5
Hexa-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}6
Hepta-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}7
Octa-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}8
Enna-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}9
Deka-expanxia-expanxia-multiexpanxis = 10{{2}}10{{1}}10{{1}}10
Tetra-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}4
Penta-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}5
Hexa-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}6
Hepta-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}7
Octa-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}8
Enna-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}9
Deka-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10
Dia-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}2
Tria-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}3
Tetra-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}4
Penta-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}5
Hexa-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}6
Hepta-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}7
Octa-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}8
Enna-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}9
Deka-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}10
Deka-expanxia-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}10{{1}}10
Deka-expanxia-expanxia-expanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{1}}10{{1}}10{{1}}10
Deka-multiexpanxia-multiexpanxia-multiexpanxis = 10{{2}}10{{2}}10{{2}}10
Mono-powerexpanxis = 10{{3}}1
Dia-powerexpanxis = 10{{3}}2
Tria-powerexpanxis = 10{{3}}3
Tetra-powerexpanxis = 10{{3}}4
Penta-powerexpanxis = 10{{3}}5
Hexa-powerexpanxis = 10{{3}}6
Hepta-powerexpanxis = 10{{3}}7
Octa-powerexpanxis = 10{{3}}8
Enna-powerexpanxis = 10{{3}}9
Deka-powerexpanxis = 10{{3}}10
Icosa-powerexpanxis = 10{{3}}20
Trianta-powerexpanxis = 10{{3}}30
Teranta-powerexpanxis = 10{{3}}40
Penanta-powerexpanxis = 10{{3}}50
Exata-powerexpanxis = 10{{3}}60
Eptata-powerexpanxis = 10{{3}}70
Ogdata-powerexpanxis = 10{{3}}80
Entata-powerexpanxis = 10{{3}}90
Hecta-powerexpanxis (Normally Kil-Toogol) = 10{{3}}100
Chilia-powerexpanxis = 10{{3}}1,000
Mega-powerexpanxis = 10{{3}}1,000,000
Giga-powerexpanxis = 10{{3}}10^9
Tera-powerexpanxis = 10{{3}}10^12
Sedeniada-powerexpanxis = 10{{3}}10^16
Dekalogia-powerexpanxis = 10{{3}}10^^10
Deka-taxia-powerexpanxis = 10{{3}}10^^^10
Deka-petaxia-powerexpanxis = 10{{3}}10{4}10
Deka-exaxia-powerexpanxis = 10{{3}}10{5}10
Deka-eptaxia-powerexpanxis = 10{{3}}10{6}10
Deka-octaxia-powerexpanxis = 10{{3}}10{7}10
Deka-ennaxia-powerexpanxis = 10{{3}}10{8}10
Deka-dekaxia-powerexpanxis = 10{{3}}10{9}10
Deka-expanxia-powerexpanxis = 10{{3}}10{{1}}10
Deka-expanxia-expanxia-powerexpanxis = 10{{3}}10{{1}}10{{1}}10
Tetra-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}4
Penta-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}5
Hexa-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}6
Hepta-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}7
Octa-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}8
Enna-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}9
Deka-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10
Deka-expanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{1}}10
Deka-expanxia-expanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{1}}10{{1}}10
Tetra-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}4
Penta-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}5
Hexa-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}6
Hepta-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}7
Octa-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}8
Enna-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}9
Deka-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}10
Deka-multiexpanxia-multiexpanxia-multiexpanxia-powerexpanxis = 10{{3}}10{{2}}10{{2}}10{{2}}10
Penta-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}5
Hexa-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}6
Hepta-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}7
Octa-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}8
Enna-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}9
Deka-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}10
Deka-expanxia-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}10{{1}}10
Deka-multiexpanxia-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}10{{2}}10
Deka-powerexpanxia-powerexpanxia-powerexpanxis = 10{{3}}10{{3}}10{{3}}10
Penta-expantaxis = 10{{4}}5
Hexa-expantaxis = 10{{4}}6
Hepta-expantaxis = 10{{4}}7
Octa-expantaxis = 10{{4}}8
enna-expantaxis = 10{{4}}9
Deka-expantaxis = 10{{4}}10
Tria-expanpetaxis = 10{{5}}3
Tetra-expanpetaxis = 10{{5}}4
Penta-expanpetaxis = 10{{5}}5
Hexa-expanpetaxis = 10{{5}}6
Hepta-expanpetaxis = 10{{5}}7
Octa-expanpetaxis = 10{{5}}8
Enna-expanpetaxis = 10{{5}}9
Deka-expanpetaxis = 10{{5}}10
Tria-expanexaxis = 10{{6}}3
Tetra-expanexaxis = 10{{6}}4
Penta-expanexaxis = 10{{6}}5
Hexa-expanexaxis = 10{{6}}6
Hepta-expanexaxis = 10{{6}}7
Octa-expanexaxis = 10{{6}}8
Enna-expanexaxis = 10{{6}}9
Deka-expanexaxis = 10{{6}}10
Tria-expaneptaxis = 10{{7}}3
Tetra-expaneptaxis = 10{{7}}4
Penta-expaneptaxis = 10{{7}}5
Hexa-expaneptaxis = 10{{7}}6
Hepta-expaneptaxis = 10{{7}}7
Octa-expaneptaxis = 10{{7}}8
Enna-expaneptaxis = 10{{7}}9
Deka-expaneptaxis = 10{{7}}10
Tria-expanoctaxis = 10{{8}}3
Tetra-expanoctaxis = 10{{8}}4
Penta-expanoctaxis = 10{{8}}5
Hexa-expanoctaxis = 10{{8}}6
Hepta-expanoctaxis = 10{{8}}7
Octa-expanoctaxis = 10{{8}}8
Enna-expanoctaxis = 10{{8}}9
Deka-expanoctaxis = 10{{8}}10
Tria-expanennaxis = 10{{9}}3
Tetra-expanennaxis = 10{{9}}4
Penta-expanennaxis = 10{{9}}5
Hexa-expanennaxis = 10{{9}}6
Hepta-expanennaxis = 10{{9}}7
Octa-expanennaxis = 10{{9}}8
Enna-expanennaxis = 10{{9}}9
Deka-expanennaxis = 10{{9}}10
Tria-expandekaxis = 10{{10}}3
Tetra-expandekaxis = 10{{10}}4
Penta-expandekaxis = 10{{10}}5
Hexa-expandekaxis = 10{{10}}6
Hepta-expandekaxis = 10{{10}}7
Octa-expandekaxis = 10{{10}}8
Enna-expandekaxis = 10{{10}}9
Deka-expandekaxis (Normally Grand tridecal) = 10{{10}}10
Deka-expanendekaxis = 10{{11}}10
Deka-expandodekaxis = 10{{12}}10
Deka-expantriadekaxis = 10{{13}}10
Deka-expantetradekaxis = 10{{14}}10
Deka-expanpentadekaxis = 10{{15}}10
Deka-expanhexadekaxis = 10{{16}}10
Deka-expanheptadekaxis = 10{{17}}10
Deka-expanoctadekaxis = 10{{18}}10
Deka-expanennadekaxis = 10{{19}}10
Deka-expanicosaxis = 10{{20}}10
Deka-expantriantaxis = 10{{30}}10
Deka-expanterantaxis = 10{{40}}10
Deka-expanpenantaxis = 10{{50}}10
Deka-expanexataxis = 10{{60}}10
Deka-expaneptataxis = 10{{70}}10
Deka-expanogdataxis = 10{{80}}10
Deka-expanentataxis = 10{{90}}10
Deka-expanhectaxis (Normally Biggol) = 10{{100}}10
Mono-explodaxis = 10{{{1}}}1
Dia-explodaxis = 10{{{1}}}2
Tria-explodaxis = 10{{{1}}}3
Tetra-explodaxis = 10{{{1}}}4
Penta-explodaxis = 10{{{1}}}5
Hexa-explodaxis = 10{{{1}}}6
Hepta-explodaxis = 10{{{1}}}7
Octa-explodaxis = 10{{{1}}}8
Enna-explodaxis = 10{{{1}}}9
Deka-explodaxis = 10{{{1}}}10
Icosa-explodaxis = 10{{{1}}}20
Trianta-explodaxis = 10{{{1}}}30
Teranta-explodaxis = 10{{{1}}}40
Penanta-explodaxis = 10{{{1}}}50
Exata-explodaxis = 10{{{1}}}60
Eptata-explodaxis = 10{{{1}}}70
Ogdata-explodaxis = 10{{{1}}}80
Entata-explodaxis = 10{{{1}}}90
Hecta-explodaxis (Normally Dukil-Googol) = 10{{{1}}}100
Grangol-carta-transmorgrifihgh = E100#/^#100#100
Greagol-carta-transmorgrifihgh = E100#/^#100#100#100
Gigangol-carta-transmorgrifihgh = E100#/^#100##4
Gorgegol-carta-transmorgrifihgh = E100#/^#100##5
Gulgol-carta-transmorgrifihgh = E100#/^#100##6
Gaspgol-carta-transmorgrifihgh = E100#/^#100##7
Ginorgol-carta-transmorgrifihgh = E100#/^#100##8
Gargantuul-carta-transmorgrifihgh = E100#/^#100##9
Googondol-carta-transmorgrifihgh = E100#/^#100##10
Gugold-carta-transmorgrifihgh = E100#/^#100##100
Throogol-carta-transmorgrifihgh = E100#/^#100###100
Godgahlah-carta-transmorgrifihgh = E100#/^#100#^#100
Gridgahlah-carta-transmorgrifihgh = E100#/^#100#^##100
Godgathor-carta-transmorgrifihgh = E100#/^#100#^#^#100
Godtothol-carta-transmorgrifihgh = E100#/^#100#^#^#^#100
Tethrathoth-carta-transmorgrifihgh = E100#/^#100#^^#100
Pentacthulhum-carta-transmorgrifihgh = E100#/^#100#^^^#100
Hexacthulhum-carta-transmorgrifihgh = E100#/^#100#^^^^#100
Godsgodgulus-carta-transmorgrifihgh = E100#/^#100#{#}#100
Godsarxitrigulus-carta-transmorgrifihgh = E100#/^#100#{#{#}#}#100
Blasphemorgulus-carta-transmorgrifihgh = E100#/^#100{#,#,1,2}100
Ludicriss-carta-transmorgrifihgh = E100#/^#100&(1)100
Agoraphobia-carta-transmorgrifihgh = E100#/^#100#*^#100
Astralthrathoth-carta-transmorgrifihgh = E100#/^#100#*^^#100
Gorgonghoulgog-carta-transmorgrifihgh = E100#/^#100*(#){#,#,1,2}100
Transmortrifihgh = E100#/^#100#/^#100
Transmorterfihgh = E100#/^#100#/^#100#/^#100
Transmorpegfihgh = E100#/^#*#5
Transmordekfihgh = E100#/^#*#10
Transmorgrifihgh-by-hyperion = E100#/^#*#100
Transmorgrifihgh-by-godgahlah = E100#/^#*#^#100
Transmorgrifihgh-by-tethrathoth = E100#/^#*#^^#100
Transmorgrifihgh-by-godsgodgulus = E100#/^#*#{#}#100
Transmorgrifihgh-by-blasphemorgulus = E100#/^#*{#,#,1,2}100
Transmorgrifihgh-by-ludicriss = E100#/^#*&(1)100
Transmorgrifihgh-by-agoraphobia = E100#/^#*#*^#100
Transmorgrifihgh-by-gorgonghoulgog = E100#/^#*(*(#){#,#,1,2})100
Deutero-transmorgrifihgh = E100#/^#*#/^#100
Trito-transmorgrifihgh = E100#/^#*#/^#*#/^#100
Teterto-transmorgrifihgh = E100#/^#*#/^#*#/^#*#/^#100
Pepto-transmorgrifihgh = E100(#/^#)^#5
Dekato-transmorgrifihgh = E100(#/^#)^#1
Transmorgrifihgh-ipso-deutero-hyperion = E100(#/^#)^##100
Transmorgrifihgh-ipso-trito-hyperion = E100(#/^#)^###100
Transmorgrifihgh-ipso-godgahlah = E100(#/^#)^#^#100
Transmorgrifihgh-ipso-tethrathoth = E100(#/^#)^#^^#100
Transmorgrifihgh-ipso-godsgodgulus = E100(#/^#)^#{#}#100
Transmorgrifihgh-ipso-blasphemorgulus = E100(#/^#)^{#,#,1,2}100
Transmorgrifihgh-ipso-ludicriss = E100(#/^#)^&(1)100
Transmorgrifihgh-ipso-agoraphobia = E100(#/^#)^#*^#100
Transmorgrifihgh-ipso-gorgonghoulgog = E100(#/^#)^(*(#){#,#,1,2})100
Dutetrated-transmorgrifihgh = E100(#/^#)^(#/^#)100
Two-ex-terrible transmorgrifihgh = E100((#/^#)^^#)^^#)100
Three-ex-terrible transmorgrifihgh = E100(((#/^#)^^#)^^#)^^#100
Terrisquared transmorgrifihgh = E100(#/^#)^^##100
Terricubed transmorgrifihgh = E100(#/^#)^^###100
Territoped transmorgrifihgh = E100(#/^#)^^#^#100
Tethrathoth-terrible transmorgrifihgh = E100(#/^#)^^#^^#100
Pentacthulhum-terrible transmorgrifihgh = E100(#/^#)^^#^^^#100
Godsgodgulus-terrible transmorgrifihgh = E100(#/^#)^^#{#}#100
Blasphemorgulus-terrible transmorgrifihgh = E100(#/^#)^^{#,#,1,2}100
Ludicriss-terrible transmorgrifihgh = E100(#/^#)^^&(1)100
Agoraphobia-terrible transmorgrifihgh = E100(#/^#)^^#*^#100
Gorgonghoulgog-terrible transmorgrifihgh = E100(#/^#)^^(*(#){#,#,1,2})100
Dupentated-transmorgrifihgh = E100(#/^#)^^(#/^#)100
Horrisquared transmorgrifihgh = E100(#/^#)^^^##100
Horritoped transmorgrifihgh = E100(#/^#)^^^#^#100
Tethrathoth-horrible transmorgrifihgh = E100(#/^#)^^^#^^#100
Godsgodgulus-horrible transmorgrifihgh = E100(#/^#)^^^#{#}#100
Blasphemorgulus-horrible transmorgrifihgh = E100(#/^#)^^^{#,#,1,2}100
Duhexated-transmorgrifihgh = E100(#/^#)^^^(#/^#)10
Godsgodgulus-based-transmorgrifihgh = E100{#/^#,#,#}100
Blasphemorgulus-based-transmorgrifihgh = E100{#/^#,#,1,2}100
Lu-transmorgrifihgh-plus-one-criss = E100&(#/^#+1)100
Lu-lu-transmorgrifihgh-plus-one-criss-criss = E100&(&(#/^#+1))100
Lu-lu-lu-transmorgrifihgh-plus-one-criss-criss-criss = E100&(&(&(#/^#+1)))100
Transmorgrifihgh with agoraphobia = E100(#/^#)*^#100
Astronomically terrible transmorgrifihgh = E100(#/^#)*^^#100
Astronomically horrible transmorgrifihgh = E100(#/^#)*^^^#100
Astronomically horrendous transmorgrifihgh = E100(#/^#)*^^^^#100
Astronomically godsgorrendous transmorgrifihgh = E100*{(#/^#),#,#}100
Astronomically blasphemorgorrendous transmorgrifihgh = E100{(#/^#),#,1,2}100
Astronomically ludicrous transmorgrifihgh = E100*&(#/^#+1)100
Two-ex-astronomically-ludicrous transmorgrifihgh = E100*&(*&(#/^#+1))100
Three-ex-astronomically-ludicrous transmorgrifihgh = E100*&(*&(*&(#/^#+1)))100
Transmorgrifihgh with two agoraphobias = E100(#/^#)**^#100
Double astronomically terrible transmorgrifihgh = E100(#/^#)**^^100
Double astronomically horrible transmorgrifihgh = E100(#/^#)**^^^100
Double astronomically horrendous transmorgrifihgh = E100(#/^#)**^^^^100
Transmorgrifihgh with three agoraphobias = E100(#/^#)***^#100
Triple astronomically terrible transmorgrifihgh = E100(#/^#)***^^100
Transmorgrifihgh with four agoraphobias = E100(#/^#)****^#100
Transmorgrifihgh with ten agoraphobias = E100(#/^#)**********^#100
Transmorgrifihgh with hundred agoraphobias = E100(#/^#)*(100)^#100
Transmordeugrifihgh = E100(#/^#)/^#100
Transmortrugrifihgh = E100((#/^#)/^#)/^#100
Transmorgrifihgh-cross = E100#/^##100
Transmorgrifihgh-cubor = E100#/^###100
Transmorgrifihgh-tope = E100#/^#^#100
Transmorgrifihulto-transmorgrifihgh = Transmorgrifiarxitri = E100#/^#/^#100
Transmorgrifiarxitet = E100#/^^#4
Grand slashchelon-tethrathoth regiment = E100#/^^#100#2
Grangol-carta-slashchelon-tethrathoth = E100#/^^#100#100
Gugold-carta-slashchelon-tethrathoth = E100#/^^#100##100
Godgahlah-carta-slashchelon-tethrathoth = E100#/^^#100#^#100
Tethrathoth-carta-slashchelon-tethrathoth = E100#/^^#100#^^#100
Godsgodgulus-carta-slashchelon-tethrathoth = E100#/^^#100#{#}#100
Blasphemorgulus-carta-slashchelon-tethrathoth = E100#/^^#100{#,#,1,2}100
Slashchelon-tethratrithoth = E100#/^^#100#/^^#100
Slashchelon-tethrathoth-by-hyperion = E100#/^^#*#100
Slashchelon-tethrathoth-by-godgahlah = E100#/^^#*#^#100
Slashchelon-tethrathoth-by-tethrathoth = E100#/^^#*#^^#100
Slashchelon-tethrathoth-by-godsgodgulus = E100#/^^#*#{#}#100
Slashchelon-tethrathoth-by-blasphemorgulus = E100#/^^#*{#,#,1,2}100
Slashchelon-tethrathoth-by-transmorgrifihgh = E100#/^^#*#/^#100
Deutero-slashchelon-tethrathoth = E100#/^^#*#/^^#100
Trito-slashchelon-tethrathoth = E100#/^^#*#/^^#*#/^^#100
Slashchelon-tethrafact = E100(#/^^#)^#100
Slashchelon-tethrathoth-ipso-godgahlah = E100(#/^^#)^#^#100
Slashchelon-tethrathoth-ipso-tethrathoth = E100(#/^^#)^#^^#100
Slashchelon-tethrathoth-ipso-godsgodgulus = E100(#/^^#)^#{#}#100
Slashchelon-tethrathoth-ipso-blasphemorgulus = E100(#/^^#)^{#,#,1,2}100
Slashchelon-tethrathoth-ipso-transmorgrifihgh = E100(#/^^#)^#/^#100
Dutetrated-slashchelon-tethrathoth = E100(#/^^#)^(#/^^#)100
Terrible slashchelon-tethrathoth = E100(#/^^#)^^#100
Horrible slashchelon-tethrathoth = E100(#/^^#)^^^#100
Horrendous slashchelon-tethrathoth = E100(#/^^#)^^^^#100
Godsgodgulus-based-slashchelon-tethrathoth = E100{#/^^#,#,#}100
Blasphemorgulus-based-slashchelon-tethrathoth = E100{#/^^#,#,1,2}100
Lu-slaschelon-tethrathoth-plus-one-criss = E100&(#/^^#+1)100
Slashchelon-tethrathoth with agoraphobia = E100(#/^^#)*^#100
Slashchelon-tethrathoth with two agoraphobias = E100(#/^^#)**^#100
Gorgonghoulgog-based-slashchelon-tethrathoth = E100*(#/^^#){#,#,1,2}100
Transmorgrifihgh-based-slashchelon-tethrathoth = E100(#/^^#)/^#100
Slashchelon-terrible slashchelon-tethrathoth = E100(#/^^#)/^^#100
Two-ex-slashchelon-terrible slashchelon-tethrathoth = E100((#/^^#)/^^#)/^^#100
Slashchelon-tethriterator = E100#/^^#>#100
Dustaculated-slashchelon-tethrathoth = E100#/^^#>#/^^#100
Slashchelon-tethracross = E100#/^^##100
Slashchelon-tethratope = E100#/^^#^#100
Slashchelon-tethrato-tethrathoth = E100#/^^#^^#100
Slashchelon-tethrato-slashchelon-tethrathoth (Alternatively slashchelon-tethrarxitri) = E100#/^^#/^^#100
Slashchelon-pentacthulhum = E100#/^^^#100
Slashchelon-godsgodgulus = E100/{#,#,#}100
Slashchelon-blasphemorgulus = E100/{#,#,1,2}100
Slashchelon-ludicriss = E100/&(1)100
Slashchelon-agoraphobia = E100#/*^#100
Slashchelon-agorabiphobia = E100#/**^#100
Slashchelon-agoratriphobia = E100#/***^#100
Transmorgribifihgh = E100#//^#100
Transmorgritrifihgh = E100#///^#100
Iniquibifihgh = E100#/x/x^#100
Conflagribifihgh = E100#/xx/xx^#100
Lustrofihgh = E100#/xxx^#100
Blastrigrifihgh = E100#/xxxx^#100
Speliafihgh = E100#/xxxxx^#100
Croluarogrifihgh = E100#/xxxxxx^#100
Heptafihgh = E100#/xxxxxxx^#100
Octafihgh = E100#/xxxxxxxx^#100
Dekafihgh = E100#(x^10)^#100
Icosafihgh = E100#(x^20)^#100
Hectafihgh = E100#(x^100)^#100
Chiliafihgh = E100#(x^1,000)^#100
Megafihgh = E100#(x^E6)^#100
Gigafihgh = E100#(x^E9)^#100
Googliafihgh = E100#(x^E100)^#100
Hyperiniquifihgh = E100x^(#+1)100
Hyperconflagrifihgh = E100x^(#+2)100
Hyperlustrofihgh = E100x^(#+3)100
Duhyperfihgh = E100x^(#+#)100
Gridifihgh = E100x^(##)100
Cubicufihgh = E100x^(###)100
Spatialfihgh = E100x^(#^#)100
Tethrathoth-fihgh = E100x^(#^^#)100
Blasphemorgulus-fihgh = E100x^({#,#,1,2})100
Transmorgrifihgh-fihgh = E100x^(#/^#)100
Transmorgrifihgh-fihgh-fihgh = E100x^x^(#/^#)100
Terrible fihgh = E100x^^#100
Terrible terrible fihgh = E100(x^^#)^^#100
Slashed terrible fihgh = E100/(x^^#)100
Slashed slashed terrible fihgh = E100/(x/(x^^#))100
Tralsadiafihgh = E100/_(3)100
Quadralarafihgh = E100/_(4)100
Quintillifihgh = E100/_(5)100
Decintifihgh = E100/_(10)100
Centigrifihgh = E100/_(#)100
Dustaculated-centigrifihgh = E100/_(/_(#))100
Twentieth Mega = 20[5]
Thirtieth Mega = 30[5]
Fortieth Mega = 40[5]
Fiftieth Mega = 50[5]
Sixtieth Mega = 60[5]
Seventieth Mega = 70[5]
Eightieth Mega = 80[5]
Ninetieth Mega = 90[5]
Meggol = 100[5]
Giga = 2[6]
Meggoltrex = 100[5][3]
Meggolsquex = 100[5][4]
Meggolplex = 100[5][5]
Grand Giga = 3[6]
Gigiston = 10[6]
Gigaggol = 100[6]
Tera = 2[7]
Peta = 2[8]
Exa = 2[9]
Googola = 2[100]
Grand Moser = 3[3[5]]
Gooser = 2[2[6]]
Terooser = 2[2[7]]
Mostrion = 2[2[2[5]]]
Mostetrion = 2[2[2[2[5]]]]
Nothing (Normally Gargoogol) = 100[]
Nothingplex = 100[][]
Nothingduplex = 100[][][]
Nothingtriplex = 100[][][][]
Nothingquadriplex = 100[][][][][]
Nothingquintiplex = 100[][][][][][]
Nothingdeciplex = 100[][][][][][][][][][][]
Einartikel = 100[1]
Nothingcentiplex = 100[][][][][]...[][][][][] with 101 []'s ≈ 101[1]
Einartikel-plexed-nothing =100[][1]
Einartikel-plexed-nothingplex = 100[][][1]
Einartikel-plexed-nothingduplex = 100[][][][1]
Einartikel-plexed-nothingquintiplex = 100[][][][][][][1]
Einartikelplex = 100[1][1]
Einartikelplex-plexed-nothing = 100[][1][1]
Einartikelplex-plexed-nothingplex = 100[][][1][1]
Einartikelduplex = 100[1][1][1]
Zweiartikel = 100[2]
Zweiartikel-plexed-nothing = 100[][2]
Zweiartikel-plexed-einartikel = 100[1][2]
Zweiartikelplex = 100[2][2]
Dreiartikel = 100[3]
Vierartikel = 100[4]
Einetzeichen = 100[&]
Einetzeichen-plexed-nothing = 100[][&]
Einetzeichen-plexed-einartikel = 100[1][&]
Einetzeichen-plexed-zweiartikel = 100[2][&]
Einetzeichenplex = 100[&][&]
Einetzeichenduplex = 100[&][&][&]
Einartikeinetzeichen = 100[&1]
Einartikeinetzeichenplex = 100[&1][&1]
Zweiartikeinetzeichen = 100[&2]
Dreiartikeinetzeichen = 100[&3]
Zweietzeichen = 100[&&]
Zweietzeichenplex = 100[&&][&&]
Einartikzweietzeichen = 100[&&1]
Dreietzeichen = 100[&&&]
Einetzweichen = 100[&_(2)]
Einetzweichenplex = 100[&_(2)][&_(2)]
Einartikeinetzweichen = 100[&_(2)1]
Einetzeicheinetzweichen = 100[&_(2)&]
Zweietzweichen = 100[&_(2)&_(2)]
Einetdreichen = 100[&_(3)]
Dustaculated-einetzeichen = 100[&_(&)]
Tristaculated-einetzeichen = 100[&_(&_(&))]
Pentastaculated-einetzeichen = 100[&_(&_(&_(&_(&))))]
Dekastaculated-einetzeichen = 100[&_(&_(&_(&_(&_(&_(&_(&_(&_(&)))))))))]
Note that these -illions use the short scale.
Millidecillion = 10^3033
Milliundecillion = 10^3036
Milliduodecillion = 10^3039
Millitredecillion = 10^3042
Milliquattuordecillion = 10^3045
Milliquindecillion = 10^3048
Millisexdecillion = 10^3051
Milliseptemdecillion = 10^3054
Millioctodecillion = 10^3057
Millinovemdecillion = 10^3060
Millivigintillion = 10^3063
Milliunvigintillion = 10^3066
Milliduovigintillion = 10^3069
Millitrevigintillion = 10^3072
Milliquattuorvigintillion = 10^3075
Milliquinvigintillion = 10^3078
Millisexvigintillion = 10^3081
Milliseptemvigintillion = 10^3084
Millioctovigintillion = 10^3087
Millinovemvigintillion = 10^3090
Millitrigintillion = 10^3093
Milliuntrigintillion = 10^3096
Milliduotrigintillion = 10^3099
Millitretrigintillion = 10^3102
Milliquattuortrigintillion = 10^3105
Milliquintrigintillion = 10^3108
Millisextrigintillion = 10^3111
Milliseptemtrigintillion = 10^3114
Millioctotrigintillion = 10^3117
Millinovemtrigintillion = 10^3120
Milliquadragintillion = 10^3123
Milliunquadragintillion = 10^3126
Milliduoquadragintillion = 10^3129
Millitrequadragintillion = 10^3132
Milliquattuorquadragintillion = 10^3135
Milliquinquadragintillion = 10^3138
Millisexquadragintillion = 10^3141
Milliseptemquadragintillion = 10^3144
Millioctoquadragintillion = 10^3147
Millinovemquadragintillion = 10^3150
Milliquinquagintillion = 10^3153
Milliunquinquagintillion = 10^3156
Milliduoquinquagintillion = 10^3159
Millitrequinquagintillion = 10^3162
Milliquattuorquinquagintillion = 10^3165
Milliquinquinquagintillion = 10^3168
Millisexquinquagintillion = 10^3171
Milliseptemquinquagintillion = 10^3174
Millioctoquinquagintillion = 10^3177
Millinovemquinquagintillion = 10^3180
Millisexagintillion = 10^3183
Milliunsexagintillion = 10^3186
Milliduosexagintillion = 10^3189
Millitresexagintillion = 10^3192
Milliquattuorsexagintillion = 10^3195
Milliquinsexagintillion = 10^3198
Millisexsexagintillion = 10^3201
Milliseptemsexagintillion = 10^3204
Millioctosexagintillion = 10^3207
Millinovemsexagintillion = 10^3210
Milliseptuagintillion = 10^3213
Milliunseptuagintillion = 10^3216
Milliduoseptuagintillion = 10^3219
Millitreseptuagintillion = 10^3222
Milliquattuorseptuagintillion = 10^3225
Milliquinseptuagintillion = 10^3228
Millisexseptuagintillion = 10^3231
Milliseptemseptuagintillion = 10^3234
Millioctoseptuagintillion = 10^3237
Millinovemseptuagintillion = 10^3240
Millioctagintillion = 10^3243
Milliunoctagintillion = 10^3246
Milliduooctagintillion = 10^3249
Millitreoctagintillion = 10^3252
Milliquattuoroctagintillion = 10^3255
Milliquinoctagintillion = 10^3258
Millisexoctagintillion = 10^3261
Milliseptemoctagintillion = 10^3264
Millioctooctagintillion = 10^3267
Millinovemoctagintillion = 10^3270
Millinonagintillion = 10^3273
Milliunnonagintillion = 10^3276
Milliduononagintillion = 10^3279
Millitrenonagintillion = 10^3282
Milliquattuornonagintillion = 10^3285
Milliquinnonagintillion = 10^3288
Millisexnonagintillion = 10^3291
Milliseptemnonagintillion = 10^3294
Millioctononagintillion = 10^3297
Millinovemnonagintillion = 10^3300
Millitricentillion = 10^3903
Milliquadringentillion = 10^4203
Milliquingentillion = 10^4503
Millisescentillion = 10^4803
Milliseptingentillion = 10^5103
Millioctingentillion = 10^5403
Millinongentillion = 10^5703
Dumillicentillion = 10^6303
Dumilliducentillion = 10^6603
Dumillitrecentillion = 10^6903
Dumilliquadringentillion = 10^7203
Dumilliquingentillion = 10^7503
Dumillisescentillion = 10^7803
Dumilliseptingentillion = 10^8103
Dumillioctingentillion = 10^8403
Dumillinongentillion = 10^8703
Trimillicentillion = 10^9303
Trimilliducentillion = 10^9603
Trimillitrecentillion = 10^9903
Trimilliquadringentillion = 10^10,203
Trimilliquingentillion = 10^10,503
Trimillisescentillion = 10^10,803
Trimilliseptingentillion = 10^11,103
Trimillioctingentillion = 10^11,403
Trimillinongentillion = 10^11,703
Untrigintimillillion = 10^93,003
Duotrigintimillillion = 10^96,003
Tretrigintimillillion = 10^99,003
Quattuortrigintimillillion = 10^102,003
Quintrigintimillillion = 10^105,003
Sextrigintimillillion = 10^108,003
Septemtrigintimillillion = 10^111,003
Octotrigintimillillion = 10^114,003
Novemtrigintimillillion = 10^117,003
Icostillion = 10^(3*10^(3*10^(3*10^60))+3)
Enicostillion = 10^(3*10^(3*10^(3*10^63))+3)
Doicostillion = 10^(3*10^(3*10^(3*10^66))+3)
Triaicostillion = 10^(3*10^(3*10^(3*10^69))+3)
Tetraicostillion = 10^(3*10^(3*10^(3*10^72))+3)
Pentaicostillion = 10^(3*10^(3*10^(3*10^75))+3)
Hexaicostillion = 10^(3*10^(3*10^(3*10^78))+3)
Heptaicostillion = 10^(3*10^(3*10^(3*10^81))+3)
Octaicostillion = 10^(3*10^(3*10^(3*10^84))+3)
Ennaicostillion = 10^(3*10^(3*10^(3*10^87))+3)
Triantillion = 10^(3*10^(3*10^(3*10^90))+3)
Sarantillion = 10^(3*10^(3*10^(3*10^120))+3)
Penintillion = 10^(3*10^(3*10^(3*10^150))+3)
Exintillion = 10^(3*10^(3*10^(3*10^180))+3)
Ebdomintillion = 10^(3*10^(3*10^(3*10^210))+3)
Ogdontillion = 10^(3*10^(3*10^(3*10^240))+3)
Enenintillion = 10^(3*10^(3*10^(3*10^270))+3)
Diakostillion = 10^(3*10^(3*10^(3*10^600))+3)
Triakostillion = 10^(3*10^(3*10^(3*10^900))+3)
Tetrakostillion = 10^(3*10^(3*10^(3*10^1200))+3)
Pentakostillion = 10^(3*10^(3*10^(3*10^1500))+3)
Hexakostillion = 10^(3*10^(3*10^(3*10^1800))+3)
Heptakostillion = 10^(3*10^(3*10^(3*10^2100))+3)
Octakostillion = 10^(3*10^(3*10^(3*10^2400))+3)
Ennakostillion = 10^(3*10^(3*10^(3*10^2700))+3)
Kiltillion = 10^(3*10^(3*10^(3*10^3000))+3)
Megtillion = 10^(3*10^(3*10^(3*10^(3*10^6)))+3)
Gigtillion = 10^(3*10^(3*10^(3*10^(3*10^9)))+3)
Tertillion = 10^(3*10^(3*10^(3*10^(3*10^12)))+3)
Pettillion = 10^(3*10^(3*10^(3*10^(3*10^15)))+3)
Dekrillion = 10^(3*10^(3*10^(3*10^(3*10^30)))+3)
Icosrillion = 10^(3*10^(3*10^(3*10^(3*10^60)))+3)
Triantrillion = 10^(3*10^(3*10^(3*10^(3*10^90)))+3)
Sarantrillion = 10^(3*10^(3*10^(3*10^(3*10^120)))+3)
Penintrillion = 10^(3*10^(3*10^(3*10^(3*10^150)))+3)
Exintrillion = 10^(3*10^(3*10^(3*10^(3*10^180)))+3)
Ebdomintrillion = 10^(3*10^(3*10^(3*10^(3*10^210)))+3)
Ogdontrillion = 10^(3*10^(3*10^(3*10^(3*10^240)))+3)
Enenintrillion = 10^(3*10^(3*10^(3*10^(3*10^270)))+3)
Hotrillion = 10^(3*10^(3*10^(3*10^(3*10^300)))+3)
Diakosrillion = 10^(3*10^(3*10^(3*10^(3*10^600)))+3)
Triakosrillion = 10^(3*10^(3*10^(3*10^(3*10^900)))+3)
Tetrakosrillion = 10^(3*10^(3*10^(3*10^(3*10^1200)))+3)
Pentakosrillion = 10^(3*10^(3*10^(3*10^(3*10^1500)))+3)
Hexakosrillion = 10^(3*10^(3*10^(3*10^(3*10^1800)))+3)
Heptakosrillion = 10^(3*10^(3*10^(3*10^(3*10^2100)))+3)
Octakosrillion = 10^(3*10^(3*10^(3*10^(3*10^2400)))+3)
Ennakosrillion = 10^(3*10^(3*10^(3*10^(3*10^2700)))+3)
Kilrillion = 10^(3*10^(3*10^(3*10^(3*10^3000)))+3)
Megrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^6))))+3)
Gigrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^9))))+3)
Quadralarillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^12))))+3)
Quintillillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^15))))+3)
Sexarioillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^18))))+3)
Septumtillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^21))))+3)
Octerilillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^24))))+3)
Novemarevillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^27))))+3)
Dekartillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^30))))+3)
Icosartillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^60))))+3)
Hecartillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^300))))+3)
Kilartillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3000))))+3)
Megartillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6)))))+3)
Penillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30)))))+3)
Pencilillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^33)))))+3)
Pencilsharpenillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^36)))))+3)
Pencilcasillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^39)))))+3)
Pencilstorillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^42)))))+3)
Pencilcratillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^45)))))+3)
Pencildonatillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^48)))))+3)
Pencilcharitillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^51)))))+3)
Pencilpleasillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^54)))))+3)
Pencilborrowillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^57)))))+3)
Erasillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^60)))))+3)
Bagillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^90)))))+3)
Chairillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^120)))))+3)
Deskillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^150)))))+3)
Bookillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^180)))))+3)
Paperillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^210)))))+3)
Testillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^240)))))+3)
Graduatillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^270)))))+3)
Schoolillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300)))))+3)
Bankillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^600)))))+3)
Factoryillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^900)))))+3)
Restaurantillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1200)))))+3)
Storillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1500)))))+3)
Hospitalillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1800)))))+3)
Concertillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2100)))))+3)
Mallillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2400)))))+3)
Skyscraperillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2700)))))+3)
Villagillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3000)))))+3)
Townillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6))))))+3)
Neighborhoodillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^9))))))+3)
Cityillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^12))))))+3)
Countryillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^15))))))+3)
Continentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^18))))))+3)
Planetillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^21))))))+3)
Systemillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^24))))))+3)
Galaxyillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^27))))))+3)
Momillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30))))))+3)
Dadillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^60))))))+3)
Brotherillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^90))))))+3)
Sisterillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^120))))))+3)
Wifillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^150))))))+3)
Husbandillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^180))))))+3)
Unclillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^210))))))+3)
Auntillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^240))))))+3)
Grandparentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^270))))))+3)
Familyillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300))))))+3)
Jobmateillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^600))))))+3)
Generationillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^900))))))+3)
Humanityillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1200))))))+3)
Lifillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1500))))))+3)
Thingillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1800))))))+3)
Existillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2100))))))+3)
Somethingillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2400))))))+3)
Everythingillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2700))))))+3)
Atomillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3000))))))+3)
Pixelillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6)))))))+3)
Letterillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^9)))))))+3)
Syllablillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^12)))))))+3)
Wordillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^15)))))))+3)
Phrasillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^18)))))))+3)
Sentencillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^21)))))))+3)
Paragraphillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^24)))))))+3)
Bookillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^27)))))))+3)
Nearillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30)))))))+3)
Almostillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300)))))))+3)
Donillion = z(1, 10)
Endonillion = z(1, 11)
Dodonillion = z(1, 12)
Tridonillion = z(1, 13)
Tetradonillion = z(1, 14)
Pentadonillion = z(1, 15)
Hexadonillion = z(1, 16)
Heptadonillion = z(1, 17)
Octadonillion = z(1, 18)
Ennadonillion = z(1, 19)
Kosolillion = z(1, 20)
Tritolillion = z(1, 30)
Sartolillion = z(1, 40)
Petolillion = z(1, 50)
Extolillion = z(1, 60)
Eptolillion = z(1, 70)
Ogdolillion = z(1, 80)
Entolillion = z(1, 90)
Hectolillion = z(1, 100)
Chilillion = z(1, 1000)
Megathillion = z(1, 10^6)
Gigathillion = z(1, 10^9)
Terathillion = z(1, 10^12)
Petathillion = z(1, 10^15)
Dekalathillion = z(1, 10^30)
Hectalathillion = z(1, 10^300)
Chilialathillion = z(1, 1000^1000)
Chilialalathillion = z(1, 1000^^3)
Chilialalalalathillion = z(1, 1000^^5)
Chilialdekathillion = z(1, 1000^^10)
The following numbers will use the modified hierarchical hyper-nested array notation.
Goppoogol = {10, 100 [1 \ 2] 2}
Goppoogolplex = {10, {10, 100 [1 \ 2] 2} [1 \ 2] 2}
Goppoogolduplex = {10, {10, {10, 100 [1 \ 2] 2} [1 \ 2] 2} [1 \ 2] 2}
Goppoogoltriplex = {10, {10, {10, {10, 100 [1 \ 2] 2} [1 \ 2] 2} [1 \ 2] 2} [1 \ 2] 2}
Goppiggol = {10, 100, 2 [1 \ 2] 2}
Goppaggol = {10, 100, 3 [1 \ 2] 2}
Goppeegol = {10, 100, 4 [1 \ 2] 2}
Goppigol = {10, 100, 5 [1 \ 2] 2}
Goppoggol = {10, 100, 6 [1 \ 2] 2}
Goppagol = {10, 100, 7 [1 \ 2] 2}
Gobboogol = {10, 10, 100 [1 \ 2] 2}
Gobboogolplex = {10, 10, {10, 10, 100 [1 \ 2] 2} [1 \ 2] 2}
Gobboogolduplex = {10, 10, {10, 10, {10, 10, 100 [1 \ 2] 2} [1 \ 2] 2} [1 \ 2] 2}
Copploral = {10, 100, 1, 2 [1 \ 2] 2}
Copploralplex = {10, {10, 100, 1, 2 [1 \ 2] 2}, 1, 2 [1 \ 2] 2}
Mupploral = {10, 100, 2, 2 [1 \ 2] 2}
Popploral = {10, 100, 3, 2 [1 \ 2] 2}
Tepploral = {10, 100, 4, 2 [1 \ 2] 2}
Gobbiggol = {10, 10, 100, 2 [1 \ 2] 2}
Gobbaggol = {10, 10, 100, 3 [1 \ 2] 2}
Gottroggol = {10, 10, 10, 100 [1 \ 2] 2}
Goobol-oppoogol = {10, 100 [2] 2 [1 \ 2] 2}
Goxxol-oppoogol = {10, 100 [3] 2 [1 \ 2] 2}
Gongoogol-oppoogol = {10, 100 [1, 2] 2 [1 \ 2] 2}
Goplegoogol-oppoogol = {10, 100 [1 [2] 2] 2 [1 \ 2] 2}
Gotrippoogol = {10, 100 [1 \ 2] 3}
Goterppoogol = {10, 100 [1 \ 2] 4}
Gopsoogol = {10, 10 [1 \ 2] 100}
Mopsoogol = {10, 10 [1 \ 2] 10, 100}
Goppoogol-goobol = {10, 100 [1 \ 2] 1 [2] 2}
Goppoogol-goxxol = {10, 100 [1 \ 2] 1 [3] 2}
Goppoogol-gongoogol = {10, 100 [1 \ 2] 1 [1, 2] 2}
Goppogol-goplegoogol = {10, 100 [1 \ 2] 1 [1 \ 2] 2}
Doppoogol = {10, 100 [1 \ 2] 1 [1 \ 2] 2}
Troppoogol = {10, 100 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2}
Goppoobol = {10, 100 [2 \ 2] 2}
Goppooxxol = {10, 100 [3 \ 2] 2}
Goppoogongoogol = {10, 100 [1, 2 \ 2] 2}
Goppoogoplegoogol = {10, 100 [1 [2] 2 \ 2] 2}
Goppodutetoogol = {10, 100 [1 [1 \ 2] 2 \ 2] 2}
Goppotritetoogol = {10, 100 [1 [1 [1 \ 2] 2 \ 2] 2 \ 2] 2}
Goppoogoltri = {10, 100 [1 \ 3] 2}
Goppoogoltet = {10, 100 [1 \ 4] 2}
Goppoogolpent = {10, 100 [1 \ 5] 2}
Goppoogoldeck = {10, 100 [1 \ 10] 2}
Goppoogoliterator = {10, 100 [1 \ 1, 2] 2}
Goppoogolditerator = {10, 100 [1 \ 1, 3] 2}
Goppoogolgriditerator = {10, 100 [1 \ 1, 1, 2] 2}
Goppoogolgridi-iterator = {10, 100 [1 \ 1, 2, 2] 2}
Goppoogoldigriditerator = {10, 100 [1 \ 1, 1, 3] 2}
Goppoogolcubiculator = {10, 100 [1 \ 1, 1, 1, 2] 2}
Goppoogolspatialator = {10, 100 [1 \ 1 [2] 2] 2}
Goppoogolspatial-iterator = {10, 100 [1 \ 1, 2 [2] 2] 2}
Goppoogoldispatialator = {10, 100 [1 \ 1 [2] 3] 2}
Goppoogolspatiterator = {10, 100 [1 \ 1 [2] 1, 2] 2}
Goppoogolspatigriditerator = {10, 100 [1 \ 1 [2] 1, 1, 2] 2}
Goppoogolspatideuciterator = {10, 100 [1 \ 1 [2] 1 [2] 2] 2}
Goppoogolgridispatialator = {10, 100 [1 \ 1 [3] 2] 2}
Goppoogolsuperiterator = {10, 100 [1 \ 1 [1, 2] 2] 2}
Goppoogolsuperspatialator = {10, 100 [1 \ 1 [1 [2] 2] 2] 2}
Goppoogoldeutersuperspatialator = {10, 100 [1 \ 1 [1 [1 [2] 2] 2] 2] 2}
Goppoogoldustaculator = {10, 100 [1 \ 1 [1 \ 2] 2] 2}
Goppoogoltristaculator = {10, 100 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2}
Goppoogolcross = {10, 100 [1 \ 1 \ 2] 2}
Goppoogolcubor = {10, 100 [1 \ 1 \ 1 \ 2] 2}
Goppoogoltope = {10, 100 [1 [2 ¬ 2] 2] 2}
Goppoogolattitope = {10, 100 [1 [3 ¬ 2] 2] 2}
Goppoogolto-gongoogol = {10, 100 [1 [1, 2 ¬ 2] 2] 2}
Goppoogolto-goplegoogol = {10, 100 [1 [1 [2] 2 ¬ 2] 2] 2}
Goppoogolto-goppogol = {10, 100 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2}
Goppoogolto-goppogolto-goppoogol = {10, 100 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2}
Kungoogol = {10, 100 [1 [1 \ 2 ¬ 2] 2] 2}
Kungoogolcross = {10, 100 [1 [1 \ 2 ¬ 2] 1 \ 2] 2}
Kungoogoltope = {10, 100 [1 [1 \ 2 ¬ 2] 1 [2 ¬ 2] 2] 2}
Quadrungoogol = {10, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2}
Humongoogol = {10, 100 [1 [2 \ 2 ¬ 2] 2] 2}
Gondeugoogol = {10, 100 [1 [1 \ 3 ¬ 2] 2] 2}
Gontreugoogol = {10, 100 [1 [1 \ 3 ¬ 2] 1 [1 \ 3 ¬ 2] 2] 2}
Transmorgrifihgoogol = {10, 100 [1 [1 \ 4 ¬ 2] 2] 2}
Iniquifihgoogol = {10, 100 [1 [1 \ 5 ¬ 2] 2] 2}
Hypering gongoogol = {10, 100 [1 [1 \ 1, 2 ¬ 2] 2] 2}
Hypering goplegoogol = {10, 100 [1 [1 [2 ¬ 2] 2 ¬ 2] 2] 2}
Hypering goppoogol = {10, 100 [1 [1 ¬ 3] 2] 2}
Hypering goppoogolcross = {10, 100 [1 [1 ¬ 1 ¬ 2] 2] 2}
Hypering goppoogoltope = {10, 100 [1 [1 [2 ◆ 2] 2] 2] 2}
Hypering kungoogol = {10, 100 [1 [1 [1 ¬ 2 ◆ 2] 2] 2] 2}
Two-ex-hypering gongoogol = {10, 100 [1 [1 [1 ¬ 1, 2 ◆ 2] 2] 2] 2}
Two-ex-hypering goppoogol = {10, 100 [1 [1 [1 ◆ 3] 2] 2] 2}
Three-ex-hypering goppogol = {10, 100 [1 [1 [1 [1 ☼ 3] 2] 2] 2] 2}
Goobel = {10, 100 [1 [2 \_(1, 2) 2] 2] 2}
Nicetetren = 4(1)
Nicepenten = 5(1)
Nicehexen = 6(1)
Nicehepten = 7(1)
Niceogden = 8(1)
Nicennen = 9(1)
Nicedecken = 10(1)
Niceicosen = 20(1)
Nicetrianten = 30(1)
Nicesaranten = 40(1)
Nicepeninten = 50(1)
Nice-exinten = 60(1)
Nice-ebdominten = 70(1)
Nice-ogdonten = 80(1)
Nice-eneninten = 90(1)
Nicehecten = 100(1)
Two hundred oneung = 200(1)
Three hundred oneung = 300(1)
Four hundred oneung = 400(1)
Five hundred oneung = 500(1)
Three ong oneung = (3(0))(1)
Ten ong oneung = (10(0))(1)
Nice ong oneung = (69(0))(1)
Nice oding oneung = (69(0)(0))(1)
Three two-ex-oneung = (3(1))(1)
Five two-ex-oneung = (5(1))(1)
Ten two-ex-oneung = (10(1))(1)
Twenty two-ex-oneung = (20(1))(1)
Fifty two-ex-oneung = (50(1))(1)
Niceone (Alternatively Nice-enneaexinten or nice oneung) = 69(1)
Nicechillen (Alternatively three ong oneung) = (3(0))(1)
Five ong oneung = (5(0))(1)
Ten ong oneung = (10(0))(1)
Nicesedenien = (16(0))(1)
Twenty ong oneung = (20(0))(1)
Fifty ong oneung = (50(0))(1)
Nicen oneung = (69(0))(1)
Hundred ong oneung (Alternatively Nicegooglien) = (100(0))(1)
Three ong ong oneung (Alternatively Three two-ex-ong oneung) = ((3(0))(0))(1)
Five ong ong oneung (Alternatively Five two-ex-ong oneung) = ((5(0))(0))(1)
Ten ong ong oneung (Alternatively Ten two-ex-ong oneung) = ((10(0))(0))(1)
Nice ong ong oneung (Alternatively Nice two-ex-ong oneung) = ((69(0))(0))(1) = (2(0)(0))(1)
Nice three-ex-ong oneung = (3(0)(0))(1)
Nice four-ex-ong oneung = (4(0)(0))(1)
Nice five-ex-ong oneung = (5(0)(0))(1)
Nice ten-ex-ong oneung = (10(0)(0))(1)
Nice twenty-ex-ong oneung = (20(0)(0))(1)
Niceduen oneung (Alternatively Nice oding oneung) = (69(0)(0))(1)
Nice oding oding oneung = (Alternatively Nice two-ex-oding oneung) = (2(0)(0)(0))(1)
Nice three-ex-oding oneung = (3(0)(0)(0))(1)
Nice five-ex-oding oneung = (5(0)(0)(0))(1)
Nice ten-ex-oding oneung = (10(0)(0)(0))(1)
Nicetruen oneung = (3(1))(1)
Nicetruen otring oneung = (2(0)(0)(0)(0))(1)
Nicetetren oneung = (4(1))(1)
Nicepenten oneung = (5(1))(1)
Nicedecken oneung = (10(1))(1)
Grand niceone (Alternatively Niceone oneung, Nice oneung oneung, Nice ong-oneung or Nice two-ex-oneung) = (69(1))(1) = 2(0)(1)
Two-ex-grand niceone (Alternatively Nice three-ex-oneung) = 3(0)(1)
Nice five-ex-oneung = 5(0)(1)
Nice ten-ex-oneung = 10(0)(1)
Nice twenty-ex-oneung = 20(0)(1)
Two ong ong-oneung = (2(0))(0)(1)
Three ong ong-oneung = (3(0))(0)(1)
Five ong ong-oneung = (5(0))(0)(1)
Ten ong ong-oneung = (10(0))(0)(1)
Nice ong ong-oneung = (69(0))(0)(1)
Nice two-ex-ong ong-oneung = (2(0)(0))(0)(1)
Nice five-ex-ong ong-oneung = (5(0)(0))(0)(1)
Nice ten-ex-ong ong-oneung = (10(0)(0))(0)(1)
Nice oding ong-oneung = (69(0)(0))(0)(1)
Nice otring ong-oneung = (69(0)(0)(0))(0)(1)
Five oneung ong-oneung = (5(1))(0)(1)
Ten oneung ong-oneung = (10(1))(0)(1)
Nice oneung ong-oneung = (69(1))(0)(1)
Nice two-ex-oneung ong-oneung = (2(0)(1))(0)(1)
Nice five-ex-oneung ong-oneung = (5(0)(1))(0)(1)
Nice ten-ex-oneung ong-oneung = (10(0)(1))(0)(1)
Grand nicen-one (Alternatively Nice two-ex-ong-oneung) = 2(0)(0)(1)
Nice three-ex-ong-oneung = 3(0)(0)(1)
Nice five-ex-ong-oneung = 5(0)(0)(1)
Nice ten-ex-ong-oneung = 10(0)(0)(1)
Niceduen-one (Alternatively two oneung-ong) = 69(0)(0)(1) = 2(1)(0)
Hundred oding-oneung = 100(0)(0)(1)
Three ong oding-oneung = (3(0))(0)(0)(1)
Nice ong oding-oneung = (69(0))(0)(0)(1)
Nice oding oding-oneung = (2(1))(0)(0)(1)
Three oneung oding-oneung = (3(1))(0)(0)(1)
Five oneung oding-oneung = (5(1))(0)(0)(1)
Ten oneung oding-oneung = (10(1))(0)(0)(1)
Niceone oding-oneung (Alternatively Nice oneung oding-oneung) = (69(1))(0)(0)(1)
Nice two-ex-oneung oding-oneung = (2(0)(1))(0)(0)(1)
Nice five-ex-oneung oding-oneung = (5(0)(1))(0)(0)(1)
Nicen-one oding-oneung = (69(0)(1))(0)(0)(1)
Nice two-ex-ong-oneung oding-oneung = (2(0)(0)(1))(0)(0)(1)
Nice five-ex-ong-oneung oding-oneung = (5(0)(0)(1))(0)(0)(1)
Grand niceduen-one (Alternatively two otring-oneung) = (69(0)(0)(1))(0)(0)(1)
Three otring-oneung = 3(0)(0)(0)(1)
Four otring-oneung = 4(0)(0)(0)(1)
Five otring-oneung = 5(0)(0)(0)(1)
Ten otring-oneung = 10(0)(0)(0)(1)
Twenty otring-oneung = 20(0)(0)(0)(1)
Nicetruen-one = 69(0)(0)(0)(1)
Grand nicetruen-one = 2(0)(0)(0)(0)(1)
Five otetring-oneung = 5(0)(0)(0)(0)(1)
Ten otetring-oneung = 10(0)(0)(0)(0)(1)
Nicetetren-one = 4(1)(0)
Grand nicetetren-one = 2(0)(0)(0)(0)(0)(1)
Five openting-oneung = 5(0)(0)(0)(0)(0)(1)
Ten openting-oneung = 10(0)(0)(0)(0)(0)(1)
Nicepenten-one = 5(1)(0)
Grand nicepenten-one = 2(0)(0)(0)(0)(0)(0)(1)
Five ohexing-oneung = 5(0)(0)(0)(0)(0)(0)(1)
Ten ohexing-oneung = 10(0)(0)(0)(0)(0)(0)(1)
Nicehexen-one (Alternatively six oneung-ong) = 6(1)(0)
Nicehepten-one (Alternatively seven oneung-ong) = 7(1)(0)
Eight oneung-ong = 8(1)(0)
Nine oneung-ong = 9(1)(0)
Ten oneung-ong = 10(1)(0)
Twelve oneung-ong = 12(1)(0)
Fifteen oneung-ong = 15(1)(0)
Twenty oneung-ong = 20(1)(0)
Thirty oneung-ong = 30(1)(0)
Fifty oneung-ong = 50(1)(0)
Niceonen (Alternatively Nice oneung-ong) = 69(1)(0)
Hundred oneung-ong = 100(1)(0)
Three ong oneung-ong = (3(0))(1)(0)
Ten ong oneung-ong = (10(0))(1)(0)
Nice ong oneung-ong = (69(0))(1)(0)
Nice oding oneung-ong = (69(0)(0))(1)(0)
Five oneung oneung-ong = (5(1))(1)(0)
Nice oneung oneung-ong = (69(1))(1)(0)
Nice ong-oneung oneung-ong = (69(0)(1))(1)(0)
Nice oding-oneung oneung-ong = (69(0)(0)(1))(1)(0)
Nice otring-oneung oneung-ong = (3(1)(0))(1)(0)
Five two-ex-oneung-ong = (5(1)(0))(1)(0)
Grand niceonen = 2(0)(1)(0)
Three ong-oneung-ong = 3(0)(1)(0)
Five ong-oneung-ong = 5(0)(1)(0)
Ten ong-oneung-ong = 10(0)(1)(0)
Nicen-onen = 69(0)(1)(0)
Grand nicen-onen = 2(0)(0)(1)(0)
Three oding-oneung-ong = 3(0)(0)(1)(0)
Five oding-oneung-ong = 5(0)(0)(1)(0)
Ten oding-oneung-ong = 10(0)(0)(1)(0)
Niceduen-onen = 69(0)(0)(1)(0)
Grand niceduen-onen = 2(0)(0)(0)(1)(0)
Three otring-oneung-ong = 3(0)(0)(0)(1)(0)
Five otring-oneung-ong = 5(0)(0)(0)(1)(0)
Ten otring-oneung-ong = 10(0)(0)(0)(1)(0)
Nicetruen-onen = 69(0)(0)(0)(1)(0)
Nicetetren-onen = 4(1)(0)(0)
Five oneung-oding = 5(1)(0)(0)
Ten oneung-oding = 10(1)(0)(0)
Niceoneduen = 69(1)(0)(0)
Nicen-oneduen = 69(0)(1)(0)(0)
Niceduen-oneduen = 69(0)(0)(1)(0)(0)
Three oneung-otring = 3(1)(0)(0)(0)
Ten oneung-otring = 10(1)(0)(0)(0)
Niceonetruen = 3(1)(1)
Niceonetetren = 4(1)(1)
Niceonepenten = 5(1)(1)
Seven oneuding = 7(1)(1)
Ten oneuding = 10(1)(1)
Twelve oneuding = 12(1)(1)
Fifteen oneuding = 15(1)(1)
Twenty oneuding = 20(1)(1)
Twenty five oneuding = 25(1)(1)
Thirty oneuding = 30(1)(1)
Forty oneuding = 40(1)(1)
Fifty oneuding = 50(1)(1)
Niceduone = 69(1)(1)
Hundred ong oneuding = 100(1)(1)
Three ong oneuding = (3(0))(1)(1)
Nice ong oneuding = (69(0))(1)(1)
Nice oding oneuding = (69(0)(0))(1)(1)
Five oneung oneuding = (5(1))(1)(1)
Ten oneung oneuding = (10(1))(1)(1)
Nice oneung oneuding = (69(1))(1)(1)
Nice oneung-ong oneuding = (69(1)(0))(1)(1)
Nice oneung-oding oneuding = (69(1)(0)(0))(1)(1)
Nice oneung-otring oneuding = (3(1)(1))(1)(1)
Five two-ex-oneuding = (5(1)(1))(1)(1)
Ten two-ex-oneuding = (10(1)(1))(1)(1)
Grand niceduone = (69(1)(1))(1)(1)
Nicen-duone = 69(0)(1)(1)
Niceduen-duone = 69(0)(0)(1)(1)
Ten oneung-oneuding = 10(1)(0)(1)
Niceone-duone = 69(1)(0)(1)
Nicen-one-duone = 69(0)(1)(0)(1)
Niceduen-one-duone = 69(0)(0)(1)(0)(1)
Ten oneung-ong-oneuding = 10(1)(0)(0)(1)
Niceonen-duone = 69(1)(0)(0)(1)
Niceoneduen-duone = 3(1)(1)(0)
Five oneuding-ong = 5(1)(1)(0)
Ten oneuding-ong = 10(1)(1)(0)
Twenty oneuding-ong = 20(1)(1)(0)
Nicetruone = 69(1)(1)(1)
Nicen-truone = 69(0)(1)(1)(1)
Niceduen-truone = 2(1)(0)(1)(1)
Five oneung-oneutring = 5(1)(0)(1)(1)
Ten oneung-oneutring = 10(1)(0)(1)(1)
Niceone-truone = 69(1)(0)(1)(1)
Nicen-one-truone = 69(0)(1)(0)(1)(1)
Niceduen-one-truone = 69(0)(0)(1)(0)(1)(1)
Five oneung-ong-oneutring = 5(1)(0)(0)(1)(1)
Niceone-en-truone = 69(1)(0)(0)(1)(1)
Niceone-duen-truone = 3(1)(1)(0)(1)
Five oneuding-oneutring = 5(1)(1)(0)(1)
Niceduone-truone = 69(1)(1)(0)(1)
Niceduone-en-truone = 69(1)(1)(0)(0)(1)
Niceduone-duen-truone = 69(1)(1)(0)(0)(0)(1)
Five oneutring-ong = 5(1)(1)(1)(0)
Ten oneutring-ong = 10(1)(1)(1)(0)
Twenty oneutring-ong = 20(1)(1)(1)(0)
Nicetetone = 4(2)
Nicetetone-en = 69(1)(1)(1)(1)(0)
Nicetetone-duen = 69(1)(1)(1)(1)(0)
Five oneutetring = 5(1)(1)(1)(1)(1)
Ten oneutetring = 10(1)(1)(1)(1)(1)
Nicepentone = 5(2)
Nicehexone = 6(2)
Niceheptone = 7(2)
Nice-ogdone = 8(2)
Nicennone = 9(2)
Nicedekone = 10(2)
Twenty twoung = 20(2)
Thirty twoung = 30(2)
Fifty twoung = 50(2)
Nicetwo = 69(2)
Hundred twoung = 100(2)
Three ong twoung = (3(0))(2)
Nice ong twoung = (69(0))(2)
Nice oneung twoung = (69(1))(2)
Nice oneuding twoung = (2(2))(2)
Nice oneutring twoung = (3(2))(2)
Five two-ex-twoung = (5(2))(2)
Ten two-ex-twoung = (10(2))(2)
Grand nicetwo = 2(0)(2)
Five ong-twoung = 5(0)(2)
Ten ong-twoung = 10(0)(2)
Nicen-two = 69(0)(2)
Niceduen-two = 69(0)(0)(2)
Five oneung-twoung = 5(1)(2)
Niceone-two = 69(1)(2)
Nicen-one-two = 69(0)(1)(2)
Niceonen-two = 69(1)(0)(2)
Niceoneduen-two = 69(1)(0)(0)(2)
Five oneuding-twoung = 5(1)(1)(2)
Niceduone-two = 69(1)(1)(2)
Nicetruone-two = 69(1)(1)(1)(2)
Five twoung-ong = 5(2)(0)
Ten twoung-ong = 10(2)(0)
Nicetwoen = 69(2)(0)
Nicetwoduen = 69(2)(0)(0)
Five twoung-oneung = 5(2)(1)
Nicetwo-one = 69(2)(1)
Nicetwoen-one = 69(2)(0)(1)
Nicetwoduen-one = 69(2)(0)(0)(1)
Nicetwo-onen = 69(2)(1)(0)
Nicetwo-oneduen = 69(2)(1)(0)(0)
Five twoung-oneuding = 5(2)(1)(1)
Nicetwo-duone = 69(2)(1)(1)
Nicetwo-truone = 3(2)(2)
Five twouding = 5(2)(2)
Ten twouding = 10(2)(2)
Nicedutwo = 69(2)(2)
Nicedutwo-one = 69(2)(2)(1)
Five twoutring = 5(2)(2)(2)
Nicetritwo = 69(2)(2)(2)
Nicetetratwo = 4(3)
Five threeung = 5(3)
Seven threeung = 7(3)
Ten threeung = 10(3)
Fifteen threeung = 15(3)
Twenty threeung = 20(3)
Thirty threeung = 30(3)
Fifty threeung = 50(3)
Nicethree = 69(3)
Nicen-three = 69(0)(3)
Niceone-three = 69(1)(3)
Nicetwo-three = 69(2)(3)
Nicedutwo-three = 69(2)(2)(3)
Five threeung-ong = 5(3)(0)
Nicethreen = 69(3)(0)
Nicethree-one = 69(3)(1)
Nicethree-two = 69(3)(2)
Niceduthree = 69(3)(3)
Nicetrithree = 3(4)
Five fourung = 5(4)
Seven fourung = 7(4)
Ten fourung = 10(4)
Fifteen fourung = 15(4)
Twenty fourung = 20(4)
Thirty fourung = 30(4)
Fifty fourung = 50(4)
Nicefour = 69(4)
Nicefouren = 69(4)(0)
Nicefourone = 69(4)(1)
Nicefourtwo = 69(4)(2)
Nicefourthree = 69(4)(3)
Two fiveung = 2(5)
Three fiveung = 3(5)
Four fiveung = 4(5)
Five fiveung = 5(5)
Ten fiveung = 10(5)
Twenty fiveung = 20(5)
Nicefive = 69(5)
Nicefiven = 69(5)(0)
Nicefiveone = 69(5)(1)
Nicefivetwo = 69(5)(2)
Nicefivethree = 69(5)(3)
Nicefivefour = 69(5)(4)
Two sixung = 2(6)
Three sixung = 3(6)
Four sixung = 4(6)
Five sixung = 5(6)
Ten sixung = 10(6)
Twenty sixung = 20(6)
Nicesix = 69(6)
Nicesixen = 69(6)(0)
Nicesixone = 69(6)(1)
Nicesixtwo = 69(6)(2)
Nicesixthree = 69(6)(3)
Nicesixfour = 69(6)(4)
Nicesixfive = 69(6)(5)
Two sixung = 2(7)
Three sixung = 3(7)
Four sixung = 4(7)
Five sixung = 5(7)
Ten sixung = 10(7)
Twenty sixung = 20(7)
Niceseven = 69(7)
Niceight = 69(8)
Nicenine = 69(9)
Ten hyperong = 10((0))
Twelve hyperong = 12((0))
Fifteen hyperong = 15((0))
Twenty hyperong = 20((0))
Thirty hyperong = 30((0))
Fifty hyperong = 50((0))
Nicehyperen (Alternatively Nicedustaculated) = 69((0))
Hundred hyperong = 100((0))
Three ong hyperong = (3(0))((0))
Nice ong hyperong = (69(0))((0))
Nice oneung hyperong = (69(1))((0))
Nice twoung hyperong = (69(2))((0))
Nice threeung hyperong = (69(3))((0))
Five two-ex-hyperong = (5((0)))((0))
Ten two-ex-hyperong = (10((0)))((0))
Twenty two-ex-hyperong = (20((0)))((0))
Grand nicehyperen = 2(0)((0))
Five ong-hyperong = 5(0)((0))
Ten ong-hyperong = 10(0)((0))
Nicen-hyperen = 69(0)((0))
Niceone-hyperen = 69(1)((0))
Nicetwo-hyperen = 69(2)((0))
Nicethree-hyperen = 69(3)((0))
Nicefive-hyperen = 69(5)((0))
Ten hyperong-ong = 10((0))(0)
Twenty hyperong-ong = 20((0))(0)
Nicehyperen-en = 69((0))(0)
Nicehyperen-one = 69((0))(1)
Nicehyperen-two = 69((0))(2)
Nicehyperen-three = 69((0))(3)
Nicehyperen-five = 69((0))(5)
Ten hyperong-hyperong = 10((0))((0))
Twenty hyperong-hyperong = 20((0))((0))
Niceduhyperen = 69((0))((0))
Niceduhyperen-en = 69((0))((0))(0)
Niceduhyperen-one = 69((0))((0))(1)
Niceduhyperen-two = 69((0))((0))(2)
Niceduhyperen-three = 69((0))((0))(3)
Niceduhyperen-five = 69((0))((0))(5)
Ten hyperong-hyperong-hyperong = 10((0))((0))((0))
Twenty hyperong-hyperong = 20((0))((0))((0))
Nicetruhyperen = 3((0)(0))
Four hyperoding = 4((0)(0))
Five hyperoding = 5((0)(0))
Seven hyperoding = 7((0)(0))
Ten hyperoding = 10((0)(0))
Twenty hyperoding = 20((0)(0))
Thirty hyperoding = 30((0)(0))
Fifty hyperoding = 50((0)(0))
Nicehyperduen = 69((0)(0))
Nicen-hyperduen = 69(0)((0)(0))
Nicehyperen-hyperduen = 69((0))((0)(0))
Niceduhyperen-hyperduen = 69((0))((0))((0)(0))
Nicehyperduen-en = 69((0)(0))(0)
Nicehyperduen-hyperen = 69((0)(0))((0))
Nicehyperduen-duhyperen = 2((0)(0))((0)(0))
Niceduhyperduen = 2((0)(0)(0))
Nicepenthyperduen = 5((0)(0)(0))
Nicehypertruen = 69((0)(0)(0))
Niceduhypertruen = 2((0)(0)(0)(0))
Nicepenthyperduen = 5((0)(0)(0))
Nicehypertetren = 4((1))
Nicehyperpenten = 5((1))
Nicehyperhepten = 7((1))
Nicehyperdecken = 10((1))
Nicehypericosen = 20((1))
Thirty hyperoneung = 30((1))
Fifty hyperoneung = 50((1))
Nicehyperone = 69((1))
Nicehyper(en-one) = 69((0)(1))
Nicehyper(duen-one) = 69((0)(0)(1))
Nicehyper(truen-one) = 69((0)(0)(0)(1))
Five hyper(oneung-ong) = 5((1)(0))
Ten hyper(oneung-ong) = 10((1)(0))
Nicehyperonen = 69((1)(0))
Nicehyperoneduen = 69((1)(0)(0))
Nicehypertruen = 69((1)(0)(0)(0))
Five hyperoneuding = 5((1)(1))
Ten hyperoneuding = 10((1)(1))
Nicehyperduone = 69((1)(1))
Nicehyperduonen = 69((1)(1)(0))
Nicehyperduoneduen = 69((1)(1)(0)(0))
Five hyperoneutring = 5((1)(1)(1))
Nicehypertruone = 3((2))
Five hypertwoung = 5((2))
Seven hyperwoung = 7((2))
Ten hypertwoung = 10((2))
Fifteen hypertwoung = 15((2))
Twenty hypertwoung = 20((2))
Thirty hypertwoung = 30((2))
Fifty hypertwoung = 50((2))
Nicehypertwo = 69((2))
Nicen-hypertwo = 69(0)((2))
Nicehyperen-hypertwo = 69((0))((2))
Nccehyperone-hypertwo = 69((1))((2))
Nicehyperduone-hypertwo = 69((1)(1))((2))
Nicehypertrione-hypertwo = 3((2))(0)
Nicehyperpentone-hypertwo = 5((2))(0)
Nicehypertwo-en = 69((2))(0)
Nicehypertwo-hyperen = 69((2))((0))
Nicehypertwo-hyperone = 69((2))((1))
Nicehypertwo-hyperduone = 69((2))((1)(1))
Nicehypertwo-hypertruone = 69((2))((1)(1)(1))
Nicehypertwo-hyperpentone = 5((2))((2))
Niceduhypertwo = 69((2))((2))
Nicetruhypertwo = 69((2))((2))((2))
Nicepenthypertwo = 5((0)(2))
Nicehyper(en-two) = 69((0)(2))
Nicehyper(one-two) = 69((1)(2))
Nicehypertwon = 69((2)(0))
Nicehyper(two-one) = 69((2)(1))
Nicehyperdutwo = 69((2)(2))
Nicehypertrutwo = 69((2)(2)(2))
Nicehyperpentwo = 5((3))
Nicehyperthree = 69((3))
Nicehyper(en-three) = 69((0)(3))
Nicehyper(one-three) = 69((1)(3))
Nicehyper(two-three) = 69((2)(3))
Nicehyper(three-en) = 69((3)(0))
Nicehyper(three-one) = 69((3)(1))
Nicehyper(three-two) = 69((3)(2))
Nicehyperduthree = 69((3)(3))
Nicehypertruthree = 69((3)(3)(3))
Nicehyperpenthree = 5((4))
Nicehyperfour = 69((4))
Nicehyperdufour = 69((4)(4))
Nicehyperpentfour = 5((5))
Nicehyperfive = 69((5))
Nicehypersix = 69((6))
Eight deuterhyperong = 8(((0)))
Ten deuterhyperong = 10(((0)))
Fifteen deuterhyperong = 15(((0)))
Twenty deuterhyperong = 20(((0)))
Thirty deuterhyperong = 30(((0)))
Fifty deuterhyperong = 50(((0)))
Nicedeuterhyperen (Alternatively nicetristaculated) = 69(((0)))
Hundred deuterhyperong = 100(((0)))
Three ong deuterhyperong = (3(0))(((0)))
Nice ong deuterhyperong = (69(0))(((0)))
Nice hyperong deuterhyperong = (69((0)))(((0)))
Nice hyperoneung = (69((1))(((0)))
Nice hypertwoung = (69((2)))(((0)))
Nice hyperthreeung = (69((3)))(((0)))
Ten two-ex-deuterhyperung = (10(((0))))(((0)))
Grand nicedeuterhyperen = 2(0)(((0)))
Nicen-deuterhyperen = 69(0)(((0)))
Nicehyperen-deuterhyperen = 69((0))(((0)))
Nicehyperone-deuterhyperen = 69((1))(((0)))
Nicehypertwo-deuterhyperen = 69((2))(((0)))
Nicehyperthree-deuterhyperen = 69((3))(((0)))
Ten hyperung-ong = 10(((0)))(0)
Nicedeuterhyperen-en = 69(((0)))(0)
Nicedeuterhyperen-hyperen = 69(((0)))((0))
Nicedeuterhyperen-hyperone = 69(((0)))((1))
Nicedeuterhyperen-hypertwo = 69(((0)))((2))
Nicedeuterhyperen-hyperthree = 69(((0)))((3))
Ten deuterhyperong-deuterhyperong = 10(((0)))(((0)))
Nicedudeuterhyperen = 69(((0)))(((0)))
Nicetrudeuterhyperen = 3((0)((0)))
Nicepentdeuterhyperen = 5((0)((0)))
Nicehyper(en-hyperen) = 69((0)((0)))
Nicehyper(one-hyperen) = 69((1)((0)))
Nicehyper(two-hyperen) = 69((2)((0)))
Nicehyper(five-hyperen) = 69((5)((0)))
Nicehyper(hyperen-en) = 69(((0))(0))
Nicehyper(hyperen-one) = 69(((0))(1))
Nicehyper(hyperen-two) = 69(((0))(2))
Nicehyper(hyperen-five) = 69(((0))(5))
Nicehyperduhyperen = 69(((0))((0)))
Nicehypertruhyperen = 3(((0)(0)))
Nicehyperpenthyperen = 5(((0)(0)))
Nicedeuterhyperduen = 69(((0)(0)))
Nicedeuterhyperone = 69(((1)))
Nicedeuterhypertwo = 69(((2)))
Nicedeuterhyperfive = 69(((5)))
Ten tritihyperong = 10((((0))))
Nicetritihyperen = 69((((0))))
Hundred trithyperong = 100((((0))))
Three ong trithyperong = (3(0))((((0))))
Nice ong trithyperong = (69(0))((((0))))
Nice hyperong trithyperong = (69((0)))((((0))))
Nice deuterhyperong trithyperong = (69(((0))))((((0))))
Grand nicetrithyperen = 2(0)((((0))))
Nicen-trithyperen = 69(0)((((0))))
Nicehyperen-trithyperen = 69((0))((((0))))
Nicedeuterhyperen-trithyperen = 69(((0)))((((0))))
Nicetrithyperen-en = 69((((0))))(0)
Nicetrithyperen-hyperen = 69((((0))))((0))
Nicetrithyperen-deuterhyperen = 69((((0))))(((0)))
Nicedutrithyperen = 69((((0))))((((0))))
Nicepentrithyperen = 5((0)(((0))))
Nicehyper(en-deuterhyperen) = 69((0)(((0))))
Nicehyper(hyperen-deuterhyperen) = 69(((0))(((0))))
Nicehyper(deuterhyperen-en) = 69((((0)))(0))
Nicehyper(deuterhyperen-hyperen) = 69((((0)))((0)))
Nicehyperdudeuterhyperen = 69((((0)))(((0))))
Nicehyperpentdeuterhyperen = 5(((0)((0))))
Nicedeuterhyper(en-hyperen) = 69(((0)((0))))
Nicedeuterhyper(hyperen-en) = 69((((0))(0)))
Nicedeuterhyperduhyperen = 69((((0))((0))))
Nicedeuterhyperpenthyperen = 5((((0)(0))))
Nicetrithyperduen = 69((((0)(0))))
Nicetrithypertruen = 69((((0)(0)(0))))
Nicetrithyperpenten = 5((((1))))
Nicetrithyperdecken = 10((((1))))
Nicetrithypericosen = 20((((1))))
Nicetrithyperone = 69((((1))))
Nicetrithyper(en-one) = 69((((0)(1))))
Nicetrithyper(duen-one) = 69((((0)(0)(1))))
Nicetrithyper(penten-one) = 5((((1)(0))))
Nicetrithyperonen = 69((((1)(0))))
Nicetrithyperoneduen = 69((((1)(0)(0))))
Nicetrithyperonepenten = 5((((1)(1))))
Nicetrithyperduone = 69((((1)(1))))
Nicetrithypertruone = 3((((2))))
Nicetrithyperpentone = 5((((2))))
Nicetrithypertwo = 69((((2))))
Nicetrithyperthree = 69((((3))))
Nicetrithyperfive = 69((((5))))
Nicetrithyperten = 69((((10))))
Niceteterthyperen = 69(((((0)))))
Niceteterthyperone = 69(((((1)))))
Niceteterthypertwo = 69(((((2)))))
Niceteterthyperthree = 69(((((3)))))
Niceteterthyperfive = 69(((((5)))))
Niceteterthyperten = 69(((((10)))))
Nicepepthyperen = 69((((((0))))))
Nicepepthyperone = 69((((((1))))))
Nicepepthypertwo = 69((((((2))))))
Nicepepthyperthree = 69((((((3))))))
Nicepepthyperfive = 69((((((5))))))
Nicepepthyperten = 69((((((10))))))
Seven thothung = 7(0<0>0)
Eight thothung = 8(0<0>0)
Nine thothung = 9(0<0>0)
Ten thothung = 10(0<0>0)
Twelve thothung = 12(0<0>0)
Fifteen thothung = 15(0<0>0)
Twenty thothung = 20(0<0>0)
Thirty thothung = 30(0<0>0)
Fifty thothung = 50(0<0>0)
Nicethrathoth (Alternatively ) = 69(0<0>0)
Seventy five thothung 75(0<0>0)
Hundred thothung = 100(0<0>0)
Three ong thothung = (3(0))(0<0>0)
Nice ong thothung = (69(0))(0<0>0)
Nice hyperong thothung = (69((0)))(0<0>0)
Three two-ex-thothung = (3(0<0>0))(0<0>0)
Ten two-ex-thothung = (10(0<0>0))(0<0>0)
Grand nicethrathoth = (69(0<0>0))(0<0>0)
Nicen-thrathoth = 69(0)(0<0>0)
Nicehyperen-thrathoth = 69((0))(0<0>0)
Three thothung-ong = 3(0<0>0)(0)
Ten thothung-ong = 10(0<0>0)(0)
Nicethrathoth-en = 69(0<0>0)(0)
Nicethrathoth-hyperen = 69(0<0>0)((0))
Three thothuding = 3(0<0>0)(0<0>0)
Ten thothung-ong = 10(0<0>0)(0<0>0)
Niceduthrathoth = 69(0<0>0)(0<0>0)
Nicetruthrathoth = 3(1<0>0)
Nicepenthrathoth = 5(1<0>0)
Nicedekthrathoth = 10(1<0>0)
Nicethrafact = 69(1<0>0)
Niceduthrafact = 69(1<0>0)(1<0>0)
Nicethradeuterfact = 69(2<0>0)
Nicethrapeptfact = 69(5<0>0)
Nicethranicen = 69((0)<0>0)
Nicethraniceduen = 69((0)(0)<0>0)
Nicethraniceone = 69((1)<0>0)
Nicethranicetwo = 69((2)<0>0)
Nicethranicefive = 69((5)<0>0)
Nicethranicehyperen = 69(((0))<0>0)
Nicethranicedeuterhyperen = 69((((0)))<0>0)
Five thothduliathung = 5((0<0>0)<0>0)
Ten thothduliathung = 10((0<0>0)<0>0)
Twenty thothduliathung = 20((0<0>0)<0>0)
Nicethraduliath = 69((0<0>0)<0>0)
Nicethraniceduthrathoth = 69((0<0>0)(0<0>0)<0>0)
Nicethranicepenthrathoth = 5((1<0>0)<0>0)
Nicen-giant = 69((1<0>0)<0>0)
Two-ex-nicen-giant = 69((1<0>0)(1<0>0)<0>0)
Three-ex-nicen-giant = 69((1<0>0)(1<0>0)(1<0>0)<0>0)
Five-ex-nicen-giant = 69((1<0>0)(1<0>0)(1<0>0)(1<0>0)(1<0>0)<0>0)
Ten-ex-nicen-giant = 10((2<0>0)<0>0)
Twenty-ex-nicen-giant = 20((2<0>0)<0>0)
Nicen-giant-grid = 69((2<0>0)<0>0)
Nicen-giant-cube = 69((3<0>0)<0>0)
Nicen-giant-penteract = 69((5<0>0)<0>0)
Nicen-giant-dekeract = 69((10<0>0)<0>0)
Nicen-giant-spatial = 69(((0)<0>0)<0>0)
Nicen-giant-superspatial = 69((((0))<0>0)<0>0)
Nicethrathruliath = 69(((0<0>0)<0>0)<0>0)
Nicen-giant-giant = 69(((1<0>0)<0>0)<0>0)
Nicen-giant-giant-grid = 69(((2<0>0)<0>0)<0>0)
Nicen-giant-giant-penteract = 69(((5<0>0)<0>0)<0>0)
Nicen-giant-giant-spatial = 69((((0)<0>0)<0>0)<0>0)
Nicen-giant-giant-superspatial = 69(((((0))<0>0)<0>0)<0>0)
Nicethratetruliath = 69((((0<0>0)<0>0)<0>0)<0>0)
Nicethrapentuliath = 69(((((0<0>0)<0>0)<0>0)<0>0)<0>0)
Nicethraheptuliath = 7(0<0>1)
Nicethradekuliath = 10(0<0>1)
Nicethraicosuliath = 20(0<0>1)
Nicethrapenintuliath = 50(0<0>1)
Niceterrithrathoth = 69(0<0>1)
Niceterrithrathoth-ipso-nicethrathoth = 69((0<0>0)<0>1)
Niceterrithrathoth-ipso-nicethraduliath = 2((0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethratruliath = 3(0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethrapentuliath = 5((0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethraheptuliath = 7((0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethradeckuliath = 10((0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethra-icosuliath = 20((0<0>1)<0>1)
Niceterrithrathoth-ipso-nicethrapenintuliath = 50((0<0>1)<0>1)
Niceterrithraduliath = 69((0<0>1)<0>1)
Niceterrithraduliath-ipso-nicethrathoth = 69(((0<0>0)<0>1)<0>1)
Niceterrithraduliath-ipso-nicethraduliath = 2(((0<0>1)<0>1)<0>1)
Niceterrithraduliath-ipso-nicethratruliath = 3(((0<0>1)<0>1)<0>1)
Niceterrithraduliath-ipso-nicethrapentuliath = 5(((0<0>1)<0>1)<0>1)
Niceterrithraduliath-ipso-nicethradeckuliath = 10(((0<0>1)<0>1)<0>1)
Niceterrithraduliath-ipso-nicethra-icosuliath = 20(((0<0>1)<0>1)<0>1)
Niceterrithrathruliath = 69(((0<0>1)<0>1)<0>1)
Niceterrithrathruliath-ipso-nicethrathoth = 69((((0<0>0)<0>1)<0>1)<0>1)
Niceterrithrathruliath-ipso-nicethraduliath = 2((((0<0>1)<0>1)<0>1)<0>1)
Niceterrithrathruliath-ipso-nicethrapentuliath = 5((((0<0>1)<0>1)<0>1)<0>1)
Niceterrithrathruliath-ipso-nicethradeckuliath = 10((((0<0>1)<0>1)<0>1)<0>1)
Niceterrithratetruliath = 4(0<0>2)
Niceterrithrapentuliath = 5(0<0>2)
Niceterrithraheptuliath = 7(0<0>2)
Niceterrithradektuliath = 10(0<0>2)
Niceterrithra-icosuliath = 20(0<0>2)
Niceterrithrapenintuliath = 50(0<0>2)
Nicedeuterterrithrathoth = 69(0<0>2)
Nicedeuterterrithraduliath = 2(0<0>3)
Nicedeuterterrithrathruliath = 3(0<0>3)
Nicedeuterterrithrapentuliath = 5(0<0>3)
Nicedeuterterrithradektuliath = 10(0<0>3)
Nicedeuterterrithra-icosuliath = 20(0<0>3)
Nicetriterrithrathoth = 69(0<0>3)
Nicetriterrithraduliath = 2(0<0>4)
Nicetriterrithrathruliath = 3(0<0>4)
Nicetriterrithrapentuliath = 5(0<0>4)
Nicetriterrithradektuliath = 10(0<0>4)
Nicetriterrithra-icosuliath = 20(0<0>4)
Niceteterterrithrathoth = 69(0<0>4)
Nicepepterrithrathoth = 69(0<0>5)
Nicehepterrithrathoth = 69(0<0>7)
Nicedekterrithrathoth = 69(0<0>10)
Nicepentadekterrithrathoth = 69(0<0>15)
Nice-icosterrithrathoth = 69(0<0>20)
Nicepentaicosterrithrathoth = 69(0<0>25)
Nicepentatrianterrithrathoth = 69(0<0>35)
Nicepeninterrithrathoth = 69(0<0>50)
Nicethriteraten = 69(0<0>(0))
Nicenthriteraten-duliath = 2(0<0>(0)(0))
Nicethriteraten-pentuliath = 5(0<0>(0)(0))
Nicethriteraten-dektuliath = 10(0<0>(0)(0))
Nicethriteratduen = 69(0<0>(0)(0))
Nicethriteratruen = 69(0<0>(0)(0)(0))
Nicethriteratpenten = 5(0<0>(1))
Nicethriteratdecken = 10(0<0>(1))
Nicethriteratone = 69(0<0>(1))
Nicethriteratwo = 69(0<0>(2))
Nicethriteratfive = 69(0<0>(5))
Nicethriterathyperen = 69(0<0>((0)))
Nicethriteratdeuterhyperen = 69(0<0>(((0))))
Nicedustaculathrathoth = 69(0<0>(0<0>0))
Nicedustaculathriteraten (Alternatively Mirrored nicen-giant) = 69(0<0>(0<0>1))
Nicedustaculathriterhyperen = 69(0<0>(0<0>(0)))
Nicetristaculathrathoth = 3(0<0>0<0>0)
Nicetetrastaculathrathoth = 4(0<0>0<0>0)
Nicepentastaculathrathoth = 5(0<0>0<0>0)
Niceheptastaculathrathoth = 7(0<0>0<0>0)
Nicedekastaculathrathoth = 10(0<0>0<0>0)
Nice-icosastaculathrathoth = 20(0<0>0<0>0)
Nice-penantastaculathrathoth = 50(0<0>0<0>0)
Nicethracross = 69(0<0>0<0>0)
Nicethracruxifact = 69(1<0>0<0>0)
Nicethracruxideuterfact = 69(2<0>0<0>0)
Nicethracruxitritfact = 69(3<0>0<0>0)
Nicethracruxipeptfact = 69(5<0>0<0>0)
Nicethracruxidektfact = 69(10<0>0<0>0)
Nicethracross-ipso-nicen = 69((0)<0>0<0>0)
Nicethracross-ipso-niceone = 69((1)<0>0<0>0)
Nicethracross-ipso-nicetwo = 69((2)<0>0<0>0)
Nicethracross-ipso-nicehyperen = 69(((0))<0>0<0>0)
Nicethracross-ipso-nicedeuterhyperen = 69((((0)))<0>0<0>0)
Nicethracross-ipso-nicethrathoth = 69((0<0>0)<0>0<0>0)
Nicethracross-ipso-nicen-giant = 69(((1<0>0)<0>0)<0>0<0>0)
Nicethracross-ipso-niceterrithrathoth = 69((0<0>1)<0>0<0>0)
Nicethracross-ipso-nicethriterator = 69((0<0>(0))<0>0<0>0)
Nicethracross-ipso-nicedustaculathrathoth = 69((0<0>(0<0>0))<0>0<0>0)
Nicethracross-ipso-nicethracross = 69((0<0>0<0>0)<0>0<0>0)
Niceterrithracross = 69(0<0>1<0>0)
Nicedeuterterrithracross = 69(0<0>2<0>0)
Niceterriterthracross = 69(0<0>(0)<0>0)
Nicehyperen-turreted-niceterrithracross = 69(0<0>((0))<0>0)
Nicethrathoth-turreted-niceterrithracross = 69(0<0>(0<0>0)<0>0)
Nicedustaculathrathoth-turreted-niceterrithracross = 69(0<0>(0<0>(0<0>0))<0>0)
Nicedustaculaterrithracross = 69(0<0>(0<0>0<0>0)<0>0)
Nicedekastaculaterrithracross = 10(0<0>0<0>1)
Nicethrahencross = 69(0<0>0<0>1)
Nicethradeucross = 69(0<0>0<0>2)
Nicethrapentcross = 69(0<0>0<0>5)
Nicethritercross = 69(0<0>0<0>(0))
Niceone-turreted-nicethracross = 69(0<0>0<0>(1))
Nicehyperen-turreted-nicethracross = 69(0<0>0<0>((0)))
Nicethrathoth-turreted-nicethracross = 69(0<0>0<0>(0<0>0))
Nicedustaculathracross = 69(0<0>0<0>(0<0>0<0>0))
Nicetristaculathracross = 3(0<0>0<0>0<0>0)
Nicepentastaculathracross = 5(0<0>0<0>0<0>0)
Nicedekastaculathracross = 10(0<0>0<0>0<0>0)
Nicethracubor = 69(0<0>0<0>0<0>0)
Nicethracuborfact = 69(1<0>0<0>0<0>0)
Nicethracubor-ipso-nicen = 69((0)<0>0<0>0<0>0)
Dutetrated-nicethracubor = 69((0<0>0<0>0<0>0)<0>0<0>0<0>0)
Niceterrithracubor = 69(0<0>1<0>0<0>0)
Nicen-turreted-niceterrithracubor = 69(0<0>(0)<0>0<0>0)
Nicedustaculaterrithracubor = 69(0<0>(0<0>0<0>0<0>0)<0>0<0>0)
Niceterrisquarethracubor = 69(0<0>0<0>1<0>0)
Nicen-turreted-niceterrisquarethracubor = 69(0<0>0<0>(0)<0>0)
Nicedustaculaterrisquarethracubor = 69(0<0>0<0>(0<0>0<0>0<0>0)<0>0)
Nicethrahencubor = 69(0<0>0<0>0<0>1)
Nicethradeucubor = 69(0<0>0<0>0<0>2)
Nicethrapencubor = 69(0<0>0<0>0<0>5)
Nicen-turreted-nicethracubor = 69(0<0>0<0>0<0>(0))
Nicedustaculathracubor = 69(0<0>0<0>0<0>(0<0>0<0>0<0>0))
Nicethrateron = 4(0<1>0)
Nicethrateronfact = 69(1<0>0<0>0<0>0<0>0)
Niceterrithrateron = 69(0<0>1<0>0<0>0<0>0)
Niceterrisquarethrateron = 69(0<0>0<0>1<0>0<0>0)
Niceterricubethrateron = 69(0<0>0<0>0<0>1<0>0)
Nicethrahenteron = 69(0<0>0<0>0<0>0<0>1)
Nicethradeu-teron = 69(0<0>0<0>0<0>0<0>2)
Nicethrapenteron = 69(0<0>0<0>0<0>0<0>5)
Nicen-turreted-niceteron = 69(0<0>0<0>0<0>0<0>(0))
Nicedustaculathrateron = 69(0<0>0<0>0<0>0<0>(0<0>0<0>0<0>0<0>0))
Nicethrapeton = 5(0<1>0)
Nicethrahexon = 6(0<1>0)
Nicethrahepton = 7(0<1>0)
Nicethra-ogdon = 8(0<1>0)
Nicethrennon = 9(0<1>0)
Nicethradekon = 10(0<1>0)
Nicethra-icoson = 20(0<1>0)
Nicethratope = 69(0<1>0)
Grand nicethratope = 2(0)(0<1>0)
Nicen-thratope = 69(0)(0<1>0)
Nicethrathoth-thratope = 69(0<0>0)(0<1>0)
Nicethracross-thratope = 69(0<0>0<0>0)(0<1>0)
Nicethracubor-thratope = 3(0<1>0)(0)
Nicethrapeton-thratope = 5(0<1>0)(0)
Nicethradekon-thratope = 10(0<1>0)(0)
Nicethratope-en = 69(0<1>0)(0)
Nicethratope-thrathoth = 69(0<1>0)(0<0>0)
Nicethratope-thracross = 69(0<1>0)(0<0>0<0>0)
Nicethratope-thracubor = 3(0<1>0)(0<1>0)
Nicethratope-thrapeton = 5(0<1>0)(0<1>0)
Nicethratope-thradekon = 10(0<1>0)(0<1>0)
Niceduthratope = 69(0<1>0)(0<1>0)
Nicetruthratope = 69(0<1>0)(0<1>0)(0<1>0)
Nicepenthratope = 5(1<1>0)
Nidedekthratope = 10(1<1>0)
Nicethratopofact = 69(1<1>0)
Nicethratopodeuterfact = 69(2<1>0)
Nicethratope-ipso-nicen = 69((0)<1>0)
Nicethratope-ipso-nicethrathoth = 69((0<0>0)<1>0)
Nicethratope-ipso-nicethratope = 69((0<1>0)<1>0)
Niceterrithratope = 69(0<0>0<1>0)
Nicehenterrithratope = 69(0<0>1<1>0)
Nicedustaculaterrithratope = 69(0<0>(0<0>0<1>0)<1>0)
Niceterrisquarethratope = 69(0<0>0<0>0<1>0)
Niceterricubethratope = 69(0<0>0<0>0<1>0)
Niceterripenteracthratope = 5(0<1>1)
Niceterridekeracthratope = 10(0<1>1)
Nicethrahentope = 69(0<1>1)
Nicen-turreted-nicethratope = 69(0<1>(0))
Nicethrathoth-turreted-nicethratope = 69(0<1>(0<0>0))
Nicedustaculathratope = 69(0<1>(0<1>0))
Nicethratopothoth = 69(0<1>0<0>0)
Nicedustaculathratopothoth = 69(0<1>0<0>(0<1>0<0>0))
Nicethratopocross = 69(0<1>0<0>0<0>0)
Nicethratopoteron = 5(0<1>0<1>0)
Nicethratopodekon = 10(0<1>0<1>0)
Nicethratopodeus = 69(0<1>0<1>0)
Nicethratopodeucithoth = 69(0<1>0<1>0<0>0)
Nicethratopodeucipeton = 5(0<1>0<1>0<1>0)
Nicethratopotruce = 3(0<2>0)
Nicethratopodeckeus = 10(0<2>0)
Nicethralattitope = 69(0<2>0)
Nicethralattitopothoth = 69(0<2>0<0>0)
Nicethralattitopotope = 69(0<2>0<1>0)
Nicethralattitopodeus = 69(0<2>0<2>0)
Nicethralattitopodeckeus = 10(0<3>0)
Nicethracubitope = 69(0<3>0)
Nicethraquinticutope = 69(0<5>0)
Nicethradecicutope = 69(0<10>0)
Nicethrato-nicen = 69(0<(0)>0)
Nicethrato-nicethrathoth (Alternatively nicethrarxideuteron) = 69(0<(0<0>0)>0)
Nicethrarxitriton = 3(0<0<0>0>0)
Nicethrarxipepton = 5(0<0<0>0>0)
Nicethrarxidekaton = 10(0<0<0>0>0)
Nicethrarxicoson = 20(0<0<0>0>0)
Nicepentacthulhum = 69(0<0<0>0>0)
Hundred pentacthulhung = 100(0<0<0>0>0)
Three ong pentactuhlhung = (3(0))(0<0<0>0>0)
Nice ong pentacthulhung = (69(0))(0<0<0>0>0)
Nice thothung pentactuhlhung = (69(0<0>0))(0<0<0>0>0)
Grand nicepentacthulhum = (69(0<0<0>0>0))(0<0<0>0>0)
Nicen-pentacthulhum = 69(0)(0<0<0>0>0)
Nicethrathoth-pentacthulhum = 69(0<0>0)(0<0<0>0>0)
Nicethrarxideuteron-pentacthulhum = 69(0<(0<0>0)>0)(0<0<0>0>0)
Nicethrarxitriton-pentactuhlhum = 3(0<0<0>0>0)(0)
Nicethrarxidekaton-pentacthulhum = 10(0<0<0>0>0)(0)
Nicepentacthulhum-en = 69(0<0<0>0>0)(0)
Nicepentacthulhum-thrathoth = 69(0<0<0>0>0)(0<0>0)
Nicepentacthulhum-thrarxideuteron = 69(0<0<0>0>0)(0<(0<0>0)>0)
Nicepentacthulhum-thrarxidekaton = 10(0<0<0>0>0)(0<0<0>0>0)
Nicedupentacthulhum = 69(0<0<0>0>0)(0<0<0>0>0)
Nicepentpentacthulhum = 5(1<0<0>0>0)
Nicepentacthulhufact = 69(1<0<0>0>0)
Nicepentacthulhum-ipso-nicen = 69((0)<0<0>0>0)
Nicepentacthulhum-ipso-nicethrathoth = 69((0<0>0)<0<0>0>0)
Nicepentacthulhum-ipso-nicethrarxideuteron = 69((0<(0<0>0)>0)<0<0>0>0)
Nicepentacthulhum-ipso-nicepentacthulhum = 69((0<0<0>0>0)<0<0>0>0)
Niceterripentacthulhum = 69(0<0>0<0<0>0>0)
Nicehenterripentacthulhum = 69(0<0>1<0<0>0>0)
Nicedeuterterripentacthulhum = 69(0<0>2<0<0>0>0)
Nicedustaculaterripentacthulhum = 69(0<0>(0<0>0<0<0>0>0)<0<0>0>0)
Niceterrisquarethrapentacthulhum = 69(0<0>0<0>0<0<0>0>0)
Niceterricubethrapentacthulhum = 69(0<0>0<0>0<0>0<0<0>0>0)
Niceterritopethrapentacthulhum = 69(0<1>0<0<0>0>0)
Niceterritonicethrathothpentacthulhum = 69(0<(0<0>0)>0<0<0>0>0)
Nicepentahencthulhum = 69(0<0<0>0>1)
Nicepentaducthulhum = 69(0<0<0>0>2)
Nicepentacthuliterator = 69(0<0<0>0>(0))
Nicedustaculapentacthulhum = 69(0<0<0>0>(0<0<0>0>0))
Nicepentacthulcross = 69(0<0<0>0>0<0>0)
Nicepentacthultope = 69(0<0<0>0>0<1>0)
Nicepentacthulto-nicethrathoth = 69(0<0<0>0>0<(0<0>0)>0)
Nicepentacthularxideuteron = 69(0<0<0>0>0<(0<0<0>0>0)>0)
Nicepentacthularxitriton = 3(0<0<0>0>0<0<0>0>0)
Nicepentacthularxipepton = 5(0<0<0>0>0<0<0>0>0)
Nicepentacthularxidekaton = 10(0<0<0>0>0<0<0>0>0)
Nicepentacthularxisoston = 20(0<0<0>0>0<0<0>0>0)
Nicepentacthularxipeninton = 50(0<0<0>0>0<0<0>0>0)
Nicehexacthulhum = 69(0<0<0>0>0<0<0>0>0)
Grand nicehexacthulhum = 2(0)(0<0<0>0>0<0<0>0>0)
Nicen-hexacthulhum = 69(0)(0<0<0>0>0<0<0>0>0)
Nicehexacthulhum-en = 69(0<0<0>0>0<0<0>0>0)(0)
Niceduhexacthulhum = 69(0<0<0>0>0<0<0>0>0)(0<0<0>0>0<0<0>0>0)
Nicehexacthulhufact = 69(1<0<0>0>0<0<0>0>0)
Horrible nicehexacthulhum = 69(0<0<0>0>1<0<0>0>0)
Nicehexahencthulhum = 69(0<0<0>0>0<0<0>0>1)
Dustaculated-nicehexahencthulhum = 69(0<0<0>0>0<0<0>0>(0<0<0>0>0<0<0>0>0))
Nicehexacthulcross = 69(0<0<0>0>0<0<0>0>0<0>0)
Nicehexacthulcubor = 69(0<0<0>0>0<0<0>0>0<0>0<0>0)
Nicehexacthulpeton = 69(0<0<0>0>0<0<0>0>0<0>0<0>0<0>0<0>0)
Nicehexacthultope = 69(0<0<0>0>0<0<0>0>0<0>0<1>0)
Nicehexacthulattitope = 69(0<0<0>0>0<0<0>0>0<2>0)
Nicehexacthularxideuteron = 69(0<0<0>0>0<0<0>0>0<(0<0<0>0>0<0<0>0>0<0>0)>0)
Nicehexacthularxidekaton = 10(0<0<0>0>0<0<0>0>0<0<0>0>0)
Niceheptacthulhum = 69(0<0<0>0>0<0<0>0>0<0<0>0>0)
Niceheptacthularxideuteron = 69(0<0<0>0>0<0<0>0>0<0<0>0>0<(0<0<0>0>0<0<0>0>0<0<0>0>0<0>0)>0)
Niceogdacthulhum = 4(0<1<0>0>0)
Niceennacthulhum = 5(0<1<0>0>0)
Nicedekacthulhum = 6(0<1<0>0>0)
Nicetetradekacthulhum = 10(0<1<0>0>0)
Nicicosacthulhum = 16(0<1<0>0>0)
Nicetriantacthulhum = 26(0<1<0>0>0)
Nicesarantacthulhum = 36(0<1<0>0>0)
Nicepenintacthulhum = 46(0<1<0>0>0)
Nicexintacthulhum = 56(0<1<0>0>0)
Nicebdomintacthulhum = 66(0<1<0>0>0)
Double supernicen's polytope = 69(0<1<0>0>0)
Double supernicen's polylattitope = 69(0<2<0>0>0)
Double supernicen's polyquinticutope = 69(0<5<0>0>0)
Double supernicen's polynicenope = 69(0<(0)<0>0>0)
Double supernicen's polydeuteronope = 69(0<(0<0<0>0>0)<0>0>0)
Super niceterrithrathoth = 69(0<0<0>1>0)
Super nicedeuterterrithrathoth = 69(0<0<0>2>0)
Super nicethriteren = 69(0<0<0>(0)>0)
Super nicethriterduen = 69(0<0<0>(0)(0)>0)
Super nicethriterone = 69(0<0<0>(1)>0)
Super nicethritertwo = 69(0<0<0>(2)>0)
Super nicethriterhyperen = 69(0<0<0>((0))>0)
Super nicethriternicethrathoth = 69(0<0<0>(0<0>0)>0)
Super nicedustaculathrathoth = 69(0<0<0>(0<0<0>0>0)>0)
Super nicethracross = 69(0<0<0>0<0>0>0)
Super nicethracubor = 69(0<0<0>0<0>0<0>0>0)
Super nicethrapeton = 5(0<0<1>0>0)
Super nicethradekon = 10(0<0<1>0>0)
Super nicethratope = 69(0<0<1>0>0)
Grand super nicethratope = 2(0)(0<0<1>0>0)
Nicen-supernicethratope = 69(0)(0<0<1>0>0)
Super nicethratopofact = 69(0<1<1>0>0)
Super nicethrahentope = 69(0<0<1>1>0)
Super nicethriterentope = 69(0<0<1>(0)>0)
Super nicedustaculathratope = 69(0<0<1>(0<0<1>0>0)>0)
Super nicethratopothoth = 69(0<0<1>0<0>0>0)
Super nicethratopocross = 69(0<0<1>0<0>0<0>0>0)
Super nicethratopodeus = 69(0<0<1>0<1>0>0)
Super nicethralattitope = 69(0<0<2>0>0)
Super nicethracubitope = 69(0<0<3>0>0)
Super nicethrato-nicen = 69(0<0<(0)>0>0)
Super nicethrarxideuteron = 69(0<0<(0<0<0>0>0)>0>0)
Two-ex-super nicethrathoth = 69(0<0<0<0>0>0>0)
Three-ex-super nicethrathoth = 4(0<0[0]0>0) (Using my modified []-brackets where n(0<0[0]0>0) = 69(0<0<0<...<0<0<0>0>0>...>0>0>0) with n <>'s)
Four-ex-super nicethrathoth = 5(0<0[0]0>0)
Five-ex-super nicethrathoth = 6(0<0[0]0>0)
Ten-ex-super nicethrathoth = 11(0<0[0]0>0)
Twenty-ex-super nicethrathoth = 21(0<0[0]0>0)
Fifty-ex-super nicethrathoth = 51(0<0[0]0>0)
Third nicen = 69(0<0[0]0>0)
Fourth nicen = 4(0,1)
Fifth nicen = 5(0,1)
Sixth nicen = 6(0,1)
Eighth nicen = 8(0,1)
Tenth nicen = 10(0,1)
Twentieth nicen = 20(0,1)
Fiftieth nicen = 50(0,1)
Nicebrackia = 69(0,1)
My SI prefixes use "-ala-", and their reciprocals use "-uto-".
Henala- (Normally Kilo-) = 1000
Henuto- (Normally Milli-) = 0.001
Diala- (Normally Mega-) = 10^6
Diuto- (Normally Micro-) = 10^(-6)
Triala- (Normally Giga-) = 10^9
Triuto- (Normally Nano-) = 10^(-9)
Tetrala- (Normally Tera-) = 10^12
Tetruto- (Normally Pico-) = 10^(-12)
Pentala- (Normally Peta-) = 10^15
Pentuto- (Normally Femto-) = 10^(-15)
Hexala- (Normally Exa-) = 10^18
Hexuto- (Normally Atto-) = 10^(-18)
Heptala- (Normally Zetta-) = 10^21
Heptuto- (Normally Zepto-) = 10^(-21)
Octala- (Normally Yotta-) = 10^24
Octuto- (Normally Yocto-) = 10^(-24)
Ennala- (Normally Ronna-) = 10^27
Ennuto- (Normally Ronto-) = 10^(-27)
Dekala- (Normally Quetta-) = 10^30
Dekuto- (Normally Quecto-) = 10^(-30)
Endekala- = 10^33
Endekuto- = 10^(-33)
Dodekala- = 10^36
Dodekuto- = 10^(-36)
Triadekala- = 10^39
Triadekuto- = 10^(-39)
Tetradekala- = 10^42
Tetradekuto- = 10^(-42)
Pentadekala- = 10^45
Pentadekuto- = 10^(-45)
Hexadekala- = 10^48
Hexadekuto- = 10^(-48)
Heptadekala- = 10^51
Heptadekuto- = 10^(-51)
Octadekala- = 10^54
Octadekuto- = 10^(-54)
Ennadekala- = 10^57
Ennadekuto- = 10^(-57)
Icosala- = 10^60
Icosuto- = 10^(-60)
Triantala- = 10^90
Triantuto = 10^(-90)
Sarantala- = 10^120
Sarantuto- = 10^(-120)
Penintala- = 10^150
Penintuto- = 10^(-150)
Exintala- = 10^180
Exintuto- = 10^(-180)
Ebdomintala- = 10^210
Ebdomintuto- = 10^(-210)
Ogdontala- = 10^240
Ogdontuto- = 10^(-240)
Enenintala- = 10^270
Enenintuto- = 10^(-270)
Hectala- = 10^300
Hectuto- = 10^(-300)
Chiliala- = 10^3000
Chiliuto- = 10^(-3000)
Megala- = 10^(3*10^6)
Meguto- = 10^(-3*10^6)
Gigala- = 10^(3*10^9)
Giguto- = 10^(-3*10^9)
Terala- = 10^(3*10^12)
Teruto- = 10^(-3*10^12)
Petala- = 10^(3*10^15)
Petuto- = 10^(-3*10^15)
Exala- = 10^(3*10^18)
Exuto- = 10^(-3*10^18)
Zettala- = 10^(3*10^21)
Zettuto- = 10^(-3*10^21)
Yottala- = 10^(3*10^24)
Yottuto- = 10^(-3*10^24)
Ronnala- = 10^(3*10^27)
Ronnuto- = 10^(-3*10^27)
Quettala- = 10^(3*10^30)
Quettuto- = 10^(-3*10^30)
Endekalala- = 10^(3*10^33)
Yes, you can stack "-ala-"s. Also, I won't give the reciprocals anymore because, well... you get it.
Dodekalala- = 10^(3*10^36)
Triadekalala- = 10^(3*10^39)
Pentadekalala- = 10^(3*10^45)
Icosalala- = 10^(3*10^60)
Hectalala- = 10^(3*10^300)
Chilialala- = 10^(3*10^3000)
Megalala- = 10^(3*10^(3*10^6))
Gigalala- = 10^(3*10^(3*10^9))
Dekalalala- = 10^(3*10^(3*10^30))
Chilialalala- = 10^(3*10^(3*10^3000))
Chilialalalala- = 10^(3*10^(3*10^(3*10^3000)))
Chilialhexa- = 1000^^6
Chilialhepta- = 1000^^7
Chilialocta- = 1000^^8
Chilialenna- = 1000^^9
Chilialdeka- = 1000^^10
Chilialicosa- = 1000^^20
Chilialhecta- = 1000^^100
Chilialchilia- = 1000^^1000
Chilialchiliala- = 1000^^1000^1000
Chilialchilialchilia- = 1000^^1000^^1000
Chilialpetetra- = 1000^^^4
Chilialpedeka- = 1000^^^10
Chilialpechilia- = 1000^^^1000
Chilialpechilialpechilia- = 1000^^^1000^^^1000
Chilialhechilia- = 1000^^^^1000
Chilialhepchilia- = 1000^^^^^100
Chilialcenchilia- = 1000{98}1000
This is my system of levels. ("->" means "to", and the given ordinals are plugged to fast-growing hierarchy, with 2 iterations (i.e. if the ordinal is x, then the intended value is f_x(f_x(10)).))
Also, if there are gaps, then that just means I use those levels the default way.
Veblen phi level = Γ0 -> ψ0(Ω^Ω^ω)
Iterated veblen phi level = ψ0(Ω^Ω^ω) -> ψ0(Ω^Ω^Ω)
Buchholz's collapsing level = ψ0(Ω_2) -> ψ0(Ω_ω)
Nested buchholz's collapsing level = ψ0(Ω_ω) -> ψ0(Ω_Ω)
Falling buchholz's collapsing level = ψ0(Ω_Ω) -> ψ0(ψI(0))
Lower inaccessible cardinal level = ψ0(ψI(0)) -> ψ0(I)
Upper inaccessible cardinal level = ψ0(I) -> ψ0(ψM(0))
Lower mahlo cardinal level = ψ0(ψM(0)) -> ψ0(M)
Upper mahlo cardinal level = ψ0(M) -> ψ0(ψK(0))
Lower weakly compact cardinal level = ψ0(ψK(0)) -> ψ0(K)
Now there are uncomputable levels. Not sure why did I even make these.
Uncomputable cantor normal form level = Ω -> ψ1(Ω_2)
Uncomputable veblen normal form level = ψ1(Ω_2) -> ψ1((Ω_2)^(Ω_2)^Ω)
Uncomputable bachmann normal form level = ψ1((Ω_2)^(Ω_2)^Ω) -> ψ1(Ω_3)
Uncomputable buchholz normal form level = ψ1(Ω_3) -> ψ1(ψI(0))
Higher first uncountable level = ψ1(ψI(0)) -> Ω_2
Second uncountable level = Ω_2 -> Ω_3
Third uncountable level = Ω_3 -> Ω_4
Higher finite-th uncountable level = Ω_4 -> Ω_ω
Countable finite-th uncountable level = Ω_ω -> Ω_Ω
Higher pre-omega-fixed-point level = Ω_Ω -> ψI(0)
Omega fixed point level = ψI(0) -> I
Inaccessible cardinal level = I -> M
Mahlo cardinal level = M -> K
Weakly compact cardinal level = K -> Indescribable cardinal
Higher real level = Indescribable cardinal -> ???
And that's it! Goodbye!