Locomotion changes over the lifetime of an organism (e.g. crawling to walking in humans). We want to understand how motor circuits evolve over time to accommodate these changes. In zebrafish, usage of fins develops late (10-15 days post birth). The Sengupta lab aims to investigate neural control of fins, how fins are integrated with other body muscles and what molecular cues guide these changes or synaptic plasticity.
We are interested in analyzing functional connections from defined brainstem nuclei to different fin and trunk spinal networks as well as spinal feedback pathways to the brain. We aim to tease out specific roles of brainstem neurons in controlling fins, trunk muscles or both during different behaviors.
Varma, A.*, Udupa, S., Sengupta, M., Ghosh, P.K., and Thirumalai, V. (2023). A machine-learning tool to identify bistable states from calcium imaging data. Jneurophys. In press.
Sengupta, M.*, and Bagnall, M.W. (2022). Spinal interneurons: diversity, connectivity, and functional implications. Annu. Rev. Neuro. DOI: 10.1146/annurev-neuro-083122-025325. https://sites.wustl.edu/bagnall/publications/
Sengupta, M.*, and Bagnall, M.W. (2022). V2b neurons act via multiple targets in spinal motor networks. Biorxiv. 10.1101/2022.08.01.502410.
Roussel, Y.*, Gaudreau, S.F., Kacer, E.R., Sengupta, M., and Bui, T.V. (2021). Modelling spinal locomotor circuits for movements in developing zebrafish. Elife 10. 10.7554/eLife.67453.
Sengupta, M.*, Daliparthi, V., Roussel, Y., Bui, T. v., and Bagnall, M.W. (2021). Spinal V1 neurons inhibit motor targets locally and sensory targets distally. Current Biology 31, 3820–3833. 10.1016/j.cub.2021.06.053.
Callahan, R.A.*, Roberts, R., Sengupta, M., Kimura, Y., Higashijima, S.-I., and Bagnall, M.W. (2019). Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. Elife 8. 10.7554/eLife.47837.
Lupton, C.*, Sengupta, M.*, Cheng, R.K., Chia, J., Thirumalai, V., and Jesuthasan, S. (2017). Loss of the habenula intrinsic neuromodulator kisspeptin1 affects learning in larval zebrafish. eNeuro 4. 10.1523/ENEURO.0326-16.2017.
Sengupta, M.*, and Thirumalai, V. (2015). AMPA receptor mediated synaptic excitation drives state-dependent bursting in Purkinje neurons of zebrafish larvae. Elife 4. 10.7554/eLife.09158.
*denotes first authors