Research Interests
My primary research interests lie in machine learning, numerical analysis, and their interface. I develop machine-learning methods to solve problems in numerical analysis (scientific machine learning), and conversely, I study machine learning within the framework of numerical analysis to obtain theoretical understanding. My work covers new methodology, rigorous mathematical analysis, and practical engineering applications.
Scientific machine learning
AI for Science
Mathematics of Deep Learning
Numerical analysis
Scientific Computing
Publications & Preprints
Kyueon Choi, Kyungkeun Kang and Seungchan Ko, Mathematical Models and Methods in Applied Sciences (M3AS) (accepted for publication), (2025).
Youngjoon Hong, Seungchan Ko and Jae Yong Lee, IMA Journal of Numerical Analysis (accepted for publication), (2025).
Seungchan Ko, Guanglian Li and Yi Yu, International Journal for Uncertainty Quantification (accepted for publication), (2025).
Youngjoon Hong, Jae Yong Lee and Seungchan Ko SIAM J. Sci. Comput. Vol. 47, Iss. 2 (2025).
Seungchan Ko and Sang Hyeon Park, J. Comput. Phys. Volume 529, 113860 (2025).
Luigi C. Berselli, Alex Kaltenbach and Seungchan Ko, arXiv:2501.00849 [math.NA], preprint (2025).
Su Yeong Jo, Seungchan Ko, Sanghyeon Park, Jongcheon Park, Hosung Kim, Sangseung Lee and Joongoo Jeon, arXiv:2505.12389 [cs.LG], preprint (2025).
Kyueon Choi, Kyungkeun Kang and Seungchan Ko arXiv:2505.05152 [math.AP], preprint (2025).
Josef Dick, Seungchan Ko, Quoc Thong Le Gia, Kassem Mustapha and Sanghyeon Park, arXiv:2505.21994 [math.NA], preprint (2025).
Jae-Myoung Kim and Seungchan Ko, Acta Math. Sci. Volume 44, pages 2296–2306 (2024).
Youngjoon Hong, Seungchan Ko and Seok-Bae Yun, arXiv:2211.08900 [math.NA], preprint (2023).
Seungchan Ko and Dowan Koo, Expert Systems with Applications, 120765, (2023).
Jae-Myoung Kim and Seungchan Ko, Z. Angew. Math. Phys. 73 (251), (2022).
Seungchan Ko, J. Math. Phys. Volume 63(4), (2022).
Seungchan Ko, J. Math. Anal. Appl. Volume 513(1) (2022).
Seungchan Ko and Endre Suli, Mathematics of Computation, Volume 88(317): 1061-1090 (2019).
Seungchan Ko, Petra Pustejovska and Endre Suli, ESAIM: M2AN, Volume 52 509–541 (2018).
*Corresponding Author
Patents
위상학적 데이터 분석을 이용한 웨이퍼 디펙 패턴 분류 방법
고승찬, 특허 제 10-2855690 호 (2025).
Finite Element Operator Network (FEONet)
Project Page: https://2jaeyong.github.io/FEONet_project/