Research Interests: Numerical Analysis and Scientific Machine Learning
My research primarily focuses on the numerical methods for nonlinear PDEs and the underlying theoretical analysis. In particular, I am interested in finite element methods and scientific machine learning, including their rigorous convergence analysis. By integrating theoretical insights with computational practice, my work seeks meaningful connections between pure mathematics and applied computation from an interdisciplinary perspective.
Numerical analysis of PDEs: finite element methods and underlying PDE analysis
Scientific machine learning: machine-learning methods for PDEs with convergence analysis
Publications & Preprints
Luigi C. Berselli and Alex Kaltenbach, arXiv:2501.00849 [math.NA], submitted (2025).
Su Yeong Jo, Seungchan Ko, Sanghyeon Park, Jongcheon Park, Hosung Kim, Sangseung Lee and Joongoo Jeon, arXiv:2505.12389 [cs.LG], submitted (2025).
Kyueon Choi, Kyungkeun Kang and Seungchan Ko arXiv:2505.05152 [math.AP], submitted (2025).
Josef Dick, Seungchan Ko, Kassem Mustapha and Sanghyeon Park, arXiv:2505.21994 [math.NA], submitted (2025).
Seungchan Ko, Guanglian Li and Yi Yu, International Journal for Uncertainty Quantification (accepted for publication), (2025).
Seungchan Ko and Sang Hyeon Park, J. Comput. Phys. Volume 529, 113860 (2025).
Youngjoon Hong, Jae Yong Lee and Seungchan Ko SIAM J. Sci. Comput. Vol. 47, Iss. 2 (2025).
Youngjoon Hong, Jae Yong Lee and Seungchan Ko, arXiv:2404.17868 [math.NA], submitted (2024).
Kyueon Choi, Kyungkeun Kang and Seungchan Ko, arXiv:2407.05628 [math.AP], submitted (2024).
Jae-Myoung Kim and Seungchan Ko, Acta Math. Sci. Volume 44, pages 2296–2306 (2024).
Youngjoon Hong, Seungchan Ko and Seok-Bae Yun, arXiv:2211.08900 [math.NA], submitted (2023).
Seungchan Ko and Dowan Koo, Expert Systems with Applications, 120765, (2023).
Jae-Myoung Kim and Seungchan Ko, Z. Angew. Math. Phys. 73 (251), (2022).
Seungchan Ko, J. Math. Phys. Volume 63(4), (2022).
Seungchan Ko, J. Math. Anal. Appl. Volume 513(1) (2022).
Seungchan Ko and Endre Suli, Mathematics of Computation, Volume 88(317): 1061-1090 (2019).
Seungchan Ko, Petra Pustejovska and Endre Suli, ESAIM: M2AN, Volume 52 509–541 (2018).
Patents
위상학적 데이터 분석을 이용한 웨이퍼 디펙 패턴 분류 방법
고승찬, 특허 제 10-2855690 호 (2025).
Finite Element Operator Network (FEONet)
Project Page: https://2jaeyong.github.io/FEONet_project/