公式解:ax² + bx + c = 0
⇒ x = −b ± √(b² − 4ac) ⁄ 2a
和的立方公式:(a+b)³ = a³+3a²b+3ab²+b³
差的立方公式:(a−b)³ = a³−3a²b+3ab²−b³
立方和公式:a³+b³ = (a+b)(a²−ab+b²)
立方差公式:a³−b³ = (a−b)(a²+ab+b²)
雙重根式:√[(a+b)+2√ab] = √a + √b
aᵐaⁿ = aᵐ⁺ⁿ
(aᵐ)ⁿ = aᵐⁿ
aⁿbⁿ = (ab)ⁿ
a⁰ = 1
aᵐ ⁄ aⁿ = aᵐ⁻ⁿ
a¹⁄ⁿ = ⁿ√a
aᵐ⁄ⁿ = (ⁿ√a)ᵐ = ⁿ√aᵐ
log10ⁿ = n
log(x)+log(y) = log(xy)
log(aⁿ) = n log(a)
直線斜率:
m = Δy ⁄ Δx (Δx ≠ 0)
點斜式:
通過A(x₀, y₀)且斜率為m
⇒y−y₀ = m(x−x₀)
斜截式:
斜率為m且y截距為b
⇒y = mx+b
截距式:
x截距為a且y截距為b(a≠0且b≠0)
⇒x ⁄ a + y ⁄ b = 1
當L:ax+by+c=0時
若b ≠ 0,m = −a ⁄ b
若b = 0,L無斜率
點到直線的距離:
P(x₀, y₀)到L: ax+by+c=0的距離d =|ax₀+by₀=c| ⁄ √(a²+b²)
標準式:M(h, k)為圓心,r為半徑
⇒(x−h)² + (y−k)² = r²
等差數列(d = 公差) an = a₁ + (n−1)d
等比數列(r = 公比) an = a₁rⁿ⁻¹
等差級數 Sn = n(a₁+an) ⁄ 2
= n[2a₁+(n−1)d] ⁄ 2
等比級數 Sn = a₁(1+rⁿ) ⁄ 1−r,(r≠1)
= na₁,(r=1)
1+2+…+n = n(n+1) ⁄ 2
1²+2²+…+n² = n(n+1)(2n+1) ⁄ 6
1³+2³+…+n³ = [n(n+1) ⁄ 2]²
階乘:n! = n×(n−1)×…×3×2×1,0! = 1
排列:Pⁿk = n! ⁄ (n−k)!
= n(n−1)(n−2)×…×(n−k+2)(n−k+1),Pⁿ₀ = 1
組合:Cⁿk = Pⁿk ⁄ k! = n! ⁄ k!(n−k)!,Cⁿ₀ = 1
若 0 ≤ k ≤ n,Cⁿk = Cⁿn₋k
若 0 ≤ k ≤ n−1,Cⁿk = Cⁿ⁻¹k + Cⁿ⁻¹k₋₁
(x+y)ⁿ =Cⁿ₀ xⁿ +Cⁿ₁ xⁿ⁻¹ y¹ +…+Cⁿᵣ xⁿ⁻ʳ yʳ +…+Cⁿn₋₁ x¹ yⁿ⁻¹ +Cⁿn yⁿ
正弦:sinθ = 對邊 ⁄ 斜邊 = a ⁄ c
餘弦:cosθ = 鄰邊 ⁄ 斜邊 = b ⁄ c
正切:tanθ = 對邊 ⁄ 鄰邊 = a ⁄ b
餘切:cotθ = 鄰邊 ⁄ 對邊 = b ⁄ a
正割:secθ = 斜邊 ⁄ 鄰邊 = c ⁄ b
餘割:cscθ = 斜邊 ⁄ 對邊 = c ⁄ a
tanθ = sinθ ⁄ cosθ
sin²θ + cos²θ = 1
0° < θ₁ < θ₂ < 90°
sinθ₂ > sinθ₁
cosθ₂ < cosθ₁
sin(90°−θ) = cosθ
cos(90°−θ) = sinθ
sin(180°−θ) = sinθ
cos(180°−θ) = −cosθ
tan(180°−θ) = −tanθ
sin(180°+θ) = −sinθ
cos(180°+θ) = −cosθ
tan(180°+θ) = tanθ
sin(−θ) = −sinθ
cos(−θ) = cosθ
tan(−θ) = −tanθ
sin(360°−θ) = −sinθ
cos(360°−θ) = cosθ
tan(360°−θ) = −tanθ
sin(90°−θ) = cosθ
sin(90°+θ) = cosθ
cos(90°−θ) = sinθ
cos(90°+θ) = −sinθ
sin(α + β) = sinαcosβ + cosαsinβ
sin(α − β) = sinαcosβ − cosαsinβ
cos(α + β) = cosαcosβ − sinαsinβ
cos(α − β) = cosαcosβ + sinαsinβ
tan(α + β) = tanα + tanβ ⁄ [1−tanα tan(−β)]
tan(α − β) = tanα − tanβ ⁄ (1+tanα tanβ)
sin2θ = 2sinθcosθ
cos2θ = cos²θ − sin²θ = 1−2sin²θ = 2cos²θ−1
tan2θ = 2tanθ ⁄ (1−tan²θ)
sin(½θ) = ± √1 − cosθ ⁄ 2
cos(½θ) = ± √1 + cosθ ⁄ 2
正弦定理:
ΔABC面積 = ½ bc sinA = ½ ca sinB = ½ ab sinC
a ⁄ sinA = b ⁄ sinB = c ⁄ sinC
= 2R (R = 外接圓半徑)
餘弦定理:
a² = b² + c² − 2bc cosA
b² = c² + a² − 2ca cosB
c² = a² + b² − 2ab cosC
海龍公式:s = a+b+c ⁄ 2
ΔABC面積 = √s(s−a)(s−b)(s−c)
a在b上的正射影 =
(a ∙ b ⁄ | b |²) b