Professional Experience

Cover photo credit: The NSTX-U “umbrella.” Photo: Elle Starkman/ PPPL Office of Communications

Staff Research Physicist

Princeton Plasma Physics LaboratoryPrinceton, NJ 08540 USAMay 2021 - Present
Working on the magnetics diagnostics in the LTX-β machine. LTX-β is the unique machine in the world to demonstrate improved confinement with both solid and liquid lithium plasma facing surfaces and flat temperature profile. This way, fusion machines can reduce temperature gradient driven instabilities at the tokamak plasma edge and gain substantially in confinement and fusion performance.
Also working on NSTX gas puff imaging (GPI) data to understand edge turbulence.
Continuing the pedestal turbulence and transport analysis on DIII-D.

Research Scientist

Department of Applied ScienceCollege William and MaryWilliamsburg, VA 23187-8795
Working On Site:DIII-D National Fusion FacilityGeneral AtomicsSan Diego, CADec 2018 - Apr 2021
Investigating the turbulence and transport at the pedestal location of tokamak plasma at the DIII-D tokamak, National Fusion Facility, San Diego, CA, USA

Scientific Officer – E

Advanced Tokamak DivisionInstitute for Plasma ResearchJul 2013 – Dec 2018

Scientist – SD

Spectroscopy Diagnostic DivisionInstitute for Plasma ResearchJul 2008 – Jun 2013

Scientist – SC

Spectroscopy Diagnostic DivisionInstitute for Plasma ResearchSep 2003 – Jun 2008
Worked on turbulence and transport at the edge and scrape off layer of severasl tokamaks Aditya, Aditya-U, SST-1, QUEST, TEXTOR, NSTX. Also developed and installed several spectroscopic and fast visible imaging diagnostics, reciprocating Langmuir probes and systems like Supersonic Molecular Beam Injection (SMBI)

Selected first author publications

Rev. Sci. Instum., 93, 113523, 2022Nucl. Fusion 61 056008, 2021 Nucl. Fusion 61 016027, 2021 Plasma Phys. Control. Fusion 60 095001 2018 Plasma Phys. Control. Fusion, 60 085014 2018 Phys. Plasmas 24, 102513, 2017 Phys. Plasmas 23, 082507, 2016 Phys. Plasmas 23, 044502, 2016 Rev. Sci. Instrum., 86, 033505, 2015 Phys. Plasmas 21, 072311, 2014 Nucl. Fusion, 52, 123016, 2012 Rev. Sci. Instum., 83(10), 10E524, 2012 Plasma Phys. Control. Fusion, 52, 125006, 2010 Nucl. Fusion, 49, 075032, 2009 Meas. Sci. Technol., 19, 045603, 2008

Other major publications

Phys. Plasmas 29, 012505 2022Phys. Plasmas 29, 012506, 2022Phys. Plasmas 28 032304, 2021 Phys. Plasmas 27 042505, 2020 Nucl. Fusion 59 126013, 2019 Nucl. Fusion 59 106003, 2019 Nucl. Fusion 59 112006, 2019 Nucl. Fusion 59 076005, 2019 Phys. Plasmas 26 020701 2019 Plasma Sci. Technol. 20 074002 2018 Phys. Plasmas 25 102503 2018 Fusion Engineering and Design 127 216-225, 2018 Nucl. Fusion 57 086003, 2017 Nucl. Fusion 57 102008, 2017 Nucl. Fusion 57 066050, 2017 Phys. Plasmas 24, 033506, 2017 Phys. Plasmas 22, 082516, 2015 Nucl. Fusion 55, 083009, 2015 J. Nucl. Mater. 463 428, 2015 J. Nucl. Mater. 463 1087 2015 Rev. Sci. Instrum., 85, 11E411, 2014 Rev. Sci. Instrum. 85, 11E808, 2014 Nucl. Fusion 54, 023010, 2014 Nucl. Fusion, 53, 023006, 2013 Phys. Plasmas, 17, 092504, 2010 Phys. Plasmas, 17, 072515, 2010 J. Phys. B: At. Mol. Opt. Phys., 43, 144012, 2010