(1) V. Pathak, S. Rahurikar, and S. Shukla, Some new best proximity point results and existence of the solution of nonlinear fractional differential equations, Mathematica Montisnigri, LXII (2025), 21-34 (University of Montenegro, Russia) (SCOPUS)
(2) N. Dubey, S. Rai, and S. Shukla, Hardy-Rogers-type mappings in relational metric spaces and fixed point theorems, Journal of Indian Acad. Math., 2024; Vol. 46(2), pp. 207-223.
(3) S. Shukla, S. Rai, J. José Miñana, On graphical fuzzy metric spaces and related fixed point theorems, Fixed Point Theory, 25(2024), No. 2, 723-746 (SCI, Impact Factor 1.396).
(4) S. Rahurikar, V. Pathak, and S. Shukla, Best proximity point theorems for ψ-φ-contractions in metric spaces, Journal of the Korean Society of Mathematical Education, Series B: The Pure and Applied Mathematics 31(3) (2024) 337-354. https://doi.org/10.7468/jksmeb.2024.31.3.337
(5) S. Rai, N. Dubey, and S. Shukla, Some Fixed Point Theorems in Fuzzy Metric-Like Spaces, Mathematica Montisnigri, LXI (2024), 19-27. (University of Montenegro, Russia) https://doi.org/10.20948/mathmontis-2024-59-3 (SCOPUS)
(6) S. Shukla, N. Dubey, J-José Miñana, Vector-Valued Fuzzy Metric Spaces and Fixed Point Theorems. Axioms, 13(4):252 (2024). https://doi.org/10.3390/axioms13040252 (SCI, Impact Factor 2.0).
(7) Nikita Dubey, S. Shukla and Rahul Shukla, On graphical symmetric spaces, fixed point theorems and existence of positive solution of fractional periodic boundary value problems, Symmetry, 16(2):1797 (2024). (SCI, Impact Factor 2.7).
(8) S. Shukla, Shweta Rai, Rahul Shukla, Some fixed point theorems for α-admissible mappings in complex-valued fuzzy metric spaces, Symmetry, 15(9):1797 (2023) (SCI, Impact Factor 2.7).
(9) S. Shukla, N. Dubey, and R. Shukla, I. Mezník, Coincidence Point of Edelstein Type Mappings in Fuzzy Metric Spaces and Application to the Stability of Dynamic Markets, Axioms, 12(9):854 (2023). https://doi.org/10.3390/axioms12090854 (SCI, Impact Factor 2.0).
(10) S. Shukla, N. Dubey, R. Shukla, Fixed point theorems in graphical cone metric spaces and application to system of initial value problems, Journal of Inequalities and Applications, 2023, 91 (2023). https://doi.org/10.1186/s13660-023-03002-3 (Springer, SCI, Impact Factor 2.021).
(11) S. Shukla, S. Rai, R. Shukla, A relation-theoretic set-valued version of Prešić-Ćirić theorem and applications, Boundary Value Problems, 2023, 59 (2023) https://doi.org/10.1186/s13661-023-01748-9 (Springer, SCI, Impact Factor 1.793).
(12) D. Gopal, W. Sintunavarat, A. Ranadive, S. Shukla, The first contraction principle in k-fuzzy metric spaces, Soft Computing, https://doi.org/10.1007/s00500-023-07946-y (Springer, SCI, Impact Factor 4.1).
(13) S. Shukla, S. Rai, Caristi type fixed point theorems in 1-M-complete fuzzy metric-like spaces, The Journal of Analysis, https://doi.org/10.1007/s41478-023-00562-x (Springer, SCI, Impact Factor 0.8).
(14) S. Rai, S. Shukla, Fixed point theorems for Mizoguchi-Takahashi relation-theoretic contractions, J. Adv. Math. Stud. Vol. 16(1) (2023) 22-34.
(15) M Asim, M Imdad and S. Shukla, Fixed point results for Geraghty-weak contractions in ordered partial rectangular b-metric spaces, Afrika Matematika, 32, pages, 811-827 (2021) (Springer, SCOPUS).
(16) V. H. Badshah, P. Bhagat and S. Shukla, Some common fixed point theorems for contractive mappings in cone 2-metric spaces equipped with a ternary relation, Matematički Vesnik, 73(1) (2021), 14-24 (SCOPUS).
(17) S. Shukla, S. Rai, Some fixed point theorems for set-valued generalized αₓ-(ψ,L)-weak contractions, Communications in Optimization Theory, Vol. 2020 (2020), Article ID 22, pp. 1-15.
(18) S. Shukla, Hans-Peter A. Künzi, Some fixed point theorems for multi-valued mappings in graphical metric spaces, Mathematica Slovaca, Volume 70, Issue 3 (2020), Pages 719-732. (SCI, Impact Factor 0.996)
(19) S. Shukla, R. Rodríguez-López, fixed points of multi-valued relation-theoretic contractions in metric spaces and application, Quaestiones Mathematicae, 43 (3), 409-424 (2020) DOI: 10.2989/16073606.2019.1578293 (Taylor & Francis, SCI, Impact Factor: 1.474).
(20) S. Shukla, N. Dubey, Some fixed point results for relation theoretic weak φ-contractions in cone metric spaces equipped with a binary relation and application to the system of Volterra type equations, Positivity, 24(4) (2020) 1041-1059. https://doi.org/10.1007/s11117-019-00719-8 (SCI, Impact Factor 1.050)
(21) S. Shukla, R. Sharma, Some common fixed point theorems for four maps in fuzzy metric-like spaces using α-φ and β-φ-fuzzy contractions, Italian Journal of Pure and Applied Mathematics, 2020, 44, pp. 859-878 (SCOPUS).
(22) S. Shukla, Erratum: Generalized Nadler G-contraction in cone metric spaces over Banach algebras endowed with a graph (Rivista di Matematica della Universita di Parma (2015) 6 (331-343)), Rivista di Matematica della Universita di Parma, Volume 10, Year 2019, Pages 165-166 (SCOPUS).
(23) S. Shukla, Fixed points of Prešić-Ćirić type fuzzy operators, Nonlinear Funct. Anal., Vol. 2019 (2019), Article ID 35, 1-8 (SCOPUS).
(24) V.H. Badshah, P. Bhagat and S. Shukla, Some common fixed point theorems in cone b₂-metric spaces over Banach algebra, Acta Universitatis Apulensis, 60, (2019) 37-52.
(25) S.K. Malhotra, S. Prakash, S. Shukla, Some fixed point theorems for set-valued (α,p)-weak contractions in cone metric spaces over Banach algebra, Advances in Mathematical Sciences, Vol. 02 (2019) 15-18.
(26) S.K. Malhotra, S. Prakash, S. Shukla, Some fixed point theorems for set-valued mappings in cone b-metric spaces equipped with a partial order, J. Adv. Math. Stud., Vol. 12(2019), No. 2, 132-143.
(27) S.K. Malhotra, P.K. Bhargava, and S. Shukla, Some coincidence and common fixed point results in cone metric spaces over Banach algebras via weak g-φ-contractions, Transactions of A. Razmadze Mathematical Institute, Vol. 173(2) (2019), 55-63 (SCI, Impact Factor 0.3).
(28) S.K. Malhotra, S. Prakash, S. Shukla, A generalization of Nadler theorem in cone b-metric spaces over Banach algebras, Communications in Optimization Theory, 2019 (2019), Article ID 10.
(29) S. Shukla, N. Mlaiki, H. Aydi, On (G,G')-Prešić-Ćirić operators in graphical metric spaces, Mathematics, 2019, 7(5), 445; doi:10.3390/math7050445 (SCI, Impact Factor: 2.592).
(30) S. Hazra, S. Shukla, Some generalizations of Kannan's theorems via σ_c-function and its application, Mathematical Modelling and Analysis, 24 (4), 530-549 (Taylor & Francis, SCI, Impact Factor: 1.603)
(31) S.K. Malhotra, P.K. Bhargava, and S. Shukla, Ordered weak φ-contractions in cone metric spaces over Banach algebras and fixed point theorems, Advances in the Theory of Nonlinear Analysis and its Applications, 3 (2019) No. 2, 102-110 (SCOPUS).
(32) S.K. Malhotra, P.K. Bhargava, and S. Shukla, A common fixed point theorem in cone metric spaces over Banach algebras, Theory and Applications of Mathematics & Computer Science, 8 (2) (2018) 81-90.
(33) J. Martinez-Moreno, D. Gopal, V. Gupta, E. Rojas, S. Shukla, Nonlinear Operator Theory and Its Applications, Journal of Function Spaces, Volume 2018, Article ID 9713872, 2 pages (SCI, Impact Factor: 1.281).
(34) S. Shukla, D. Gopal, W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems, 350, 85-94 (2018) DOI: 10.1016/j.fss.2018.02.010 (Elsevier, SCI, IF: 4.462).
(35) S. Shukla, R.R.-López, M. Abbas, Fixed point results in complex-valued fuzzy metric spaces, Fixed Point Theory, Volume 19, No. 2, 2018, 751-774, June 1st, 2018 (SCI, Impact Factor: 2.435).
(36) S.K. Malhotra, P.K. Bhargava and S. Shukla, Hybrid pair of mappings and common fixed point theorems in ordered cone metric spaces over Banach algebras, International Journal of Advanced Scientific Research and Management, Volume 3 Issue 2, Feb 2018.
(37) S.K. Malhotra, P.K. Bhargava and S. Shukla, Some Fixed Point and Common Fixed Theorems in Cone Metric Spaces over Banach Algebras Endowed with a Graph, J. Comp. & Math. Sci. Vol.9 (3), 186 - 193 (2018).
(38) S. Shukla, D. Gopal, Juan Martínez-Moreno, Fixed points of set-valued F-contractions and its application to non-linear integral equations, Filomat 31:11 (2017), 3377-3390 (SCI, Impact Factor: 0.844)
(39) V.H. Badshah, P. Bhagat, S. Shukla, Some fixed point theorems for generalized R-Lipschitz mappings in linear cone 2-normed spaces, Rivista di Matematica della Università di Parma, Vol. 8, No. 2, 193-209 (2017) (SCOPUS).
(40) M. Arshad, Z. Kadelburgb, S. Radenović, A. Shoaib, S. Shukla, Fixed points of α-dominated mappings on dislocated metric spaces and fixed point results, Filomat 31:11 (2017), 3041-3056 (SCI, Impact Factor: 0.988)
(41) H.K. Nashine, R. P. Agarwal, S. Shukla, A. Gupta, Some fixed point theorems for almost (GF,δ_b)-contractions and applications, Fasciculi Mathematici, De Gruyter, 58 (2017) 123-143.
(42) S. Shukla, Some fixed point theorems in ordered partial b-metric spaces, Gazi University Journal of Science, 30(1) (2017), 345-354 (SCOPUS, ESCI-Thomson Reuters).
(43) S.K. Malhotra, J.B. Sharma, S. Shukla, Fixed points of generalized Kannan type α-admissible mappings in cone metric spaces with Banach algebra, Theory and Applications of Mathematics & Computer Science (TAMCS), 7 (1) (2017), 1-13.
(44) S.K. Malhotra, J.B. Sharma, S. Shukla, Some fixed point theorems for G-contractions in cone b-metric spaces over Banach algebra, Journal of Nonlinear Functional Analysis, 2017 (2017), Article ID 9. (SCOPUS, ESCI-Thomson Reuters).
(45) S. Shukla, S. Radenović, Some generalizations of Prešić type mappings and applications, Annals of the Alexandru Ioan Cuza University Mathematics, Tomul LXIII, 2017, f. 2. (SCI, Impact Factor: 0.2).
(46) V.H. Badshah, P. Bhagat, S. Shukla, Some fixed point theorems for α-φ-contractive mappings in cone 2-metric spaces, Scientific Publications of The State University of Novi Pazar Series A: Applied Mathematics, Informatics & Mechanics, vol. 8, 2 (2016), 187-199.
(47) S. Shukla, D. Gopal and R. R-López, Fuzzy-Prešić-Ćirić operators and applications to certain nonlinear differential equations, Mathematical Modelling and Analysis 21(6) (2016) 811-835 (Taylor & Francis, SCI, Impact Factor: 1.603) DOI: 10.1080/03081079.2016.1153084.
(48) S. Shukla, G-(F,τ)-contractions in partial rectangular metric spaces endowed with a graph and fixed point theorems, TWMS Journal of Applied and Engineering Mathematics Vol.6, No.2, 2016, pp. 342-353 (SCI Impact Factor: 2.722).
(49) S. Shukla, S. Radenović, C. Vetro, Graphical metric space: a generalized setting in fixed point theory, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 111(3), 641-655. DOI 10.1007/s13398-016-0316-0 (Springer, SCI, Impact Factor: 2.169).
(50) S. Shukla, N. Shahzad, Fixed points of α-admissible Prešić type operators, Nonlinear Analysis: Modelling and Control, Vol. 21(2016), No. 3, 424-436. (SCI, Impact Factor: 3.257).
(51) S. Shukla, D. Gopal, A.F. Roldán-López-de-Hierro, Some fixed point theorems in 1-complete fuzzy metric-like spaces, International Journal of
General Systems, (Taylor & Francis, SCI, Impact Factor: 2.435), Volume 45(7-8) (2016) 815-829 http://dx.doi.org/10.1080/03081079.2016.1153084.
(52) V.H. Badshah, P. Bhagat, S. Shukla, Some fixed point results on (φ,L,ℳ)-weak contraction in cone 2-metric spaces, Asia Pacific Journal of Mathematics, Vol. 3, No. 1 (2016), 24-37.
(53) Z. Kadelburg, S. Radenović, S. Shukla, Boyd-Wong and Meir-Keeler type theorems in generalized metric spaces, J. Adv. Math. Stud., Vol. 9(2016), No. 1, 83-93.
(54) A.H. Ansari, S. Shukla, Some fixed point theorems for ordered F-(ℱ,h)-contraction and subcontractions in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud., Vol. 9(2016), No. 1, 37-53.
(55) S. Shukla, Set-valued Prešić-Chatterjea type contractions and fixed point theorems, Gazi University Journal of Science, 29(2):473-478 (2016) (SCOPUS, ESCI-Thomson Reuters).
(56) S.K. Malhotra, J.B. Sharma, S. Shukla, Relation-theoretic contraction principle in cone metric spaces with Banach algebra, Scientific Publications of The State University of Novi Pazar Series A: Applied Mathematics, Informatics & Mechanics, vol. 8, 1 (2016), 79-92.
(57) S. Shukla, Some critical remarks on the multiplicative metric spaces and fixed point results, Journal of Advanced Mathematical Studies, Vol. 9(2016), No. 3, 454-458.
(58) S. Shukla, Hemant Kumar Nashine, Cyclic-Prešić-Ćirić operators in metric-like spaces and fixed point theorems, Nonlinear Analysis-Modelling and Control, Vol. 21(2016), No. 2, 261-273 (SCI, Impact Factor: 3.257).
(59) S. Shukla, S. Balasubramanian, M. Pavlović, A Generalized Banach Fixed Point Theorem, Bulletin of the Malaysian Mathematical Sciences Society, doi: 10.1007/s40840-015-0255-5 (2016) (Springer, SCI, Impact Factor: 1.554).
(60) S. Shukla, Set-valued Prešić-Reich type contractions in cone metric spaces and fixed point theorems, Journal of Nonlinear Analysis and Optimization: Theory & Applications, Vol.6, No.2, (2015), 103-114.
(61) S. Shukla, Generalized Nadler G-contraction in cone metric spaces over Banach algebras endowed with a graph, Rivista Di Mathematics Della Università Di Parma, vol.6, no.2 (2015) 331-343. (SCOPUS).
(62) F. Khojasteh, S. Shukla, S. Radenović, A New Approach to the Study of Fixed Point Theory for Simulation Functions, Filomat 29:6 (2015), 1189-
1194 (SCI, Impact Factor: 0.844).
(63) P. Salimi, N. Hussain, S. Shukla, Sh. Fathollahi, S. Radenović, Fixed point results for cyclic α-ψφ-contractions with application to integral equations, Journal of Computational and Applied Mathematics, 290 (2015) 445-458 (Elsevier, SCI, Impact Factor: 2.872).
(64) N. Shahzad, S. Shukla, Set-valued G-Prešić operators on metric spaces endowed with a graph and fixed point theorems, Fixed Point Theory and Applications, (2015) 2015:24, DOI 10.1186/s13663-015-0262-0 (Springer, SCI, Impact Factor: 2.5).
(65) S.K. Malhotra, S. Shukla, R. Sen, Some common fixed point theorems for Gregus type mappings, Journal of Basic and Applied Research International, 3(1) (2015) 37-46.
(66) S. Shukla and Mujahid Abbas, Some fixed point theorems for fuzzy cyclic contraction without monotone property, Asia Pacific Journal of Mathematics, Vol. 2, No. 1 (2015), 9-19.
(67) S.K. Malhotra, J.B. Sharma, Satish Shukla, Fixed points of α-admissible mappings in cone metric spaces with Banach algebra, International Journal of Analysis and Applications, Volume 9, Number 1 (2015), 9-18 (ESCI-Thomson Reuters, SCOPUS).
(68) S. Shukla, Some stability results and Assad-Kirk type fixed point theorems for set-valued Prešić type mappings, Journal of Nonlinear and Convex Analysis, 16(3) (2015), 509-520 (SCI, Impact Factor: 1.075).
(69) S. Shukla, R. Sen, S. Radenović, Set-valued Prešić type contraction in metric spaces, Ann. of the Alex. Ioan Cuza Univ-Math., Tomul LXI, 2015, f.2 (SCI, Impact Factor: 0.2).
(70) M.S. Khan, S. Shukla, Shin Min Kang, Weakly monotone Prešić type mappings in ordered cone metric spaces, Bulletin of the Korean Mathematical Society, 52 (3) (2015), 881-893 (SCI, Impact Factor: 0.454).
(71) Reny George, S.Radenović, K.P Reshma and S. Shukla, Rectangular b-Metric Spaces and Contraction Principle, The Journal of Nonlinear Science and Applications, 8 (2015), 1005-1013 (SCI, Impact Factor 0.886)
(72) S. Shukla and S. Chouhan, Fuzzy cyclic contraction and fixed point theorems, Journal of the Egyptian Mathematical Society, (Elsevier) Volume 23, Issue 1, April 2015, Pages 139-143.
(73) S. Shukla, N. Shahzad, G-Prešić operators on metric spaces endowed with a graph and fixed point theorems, Fixed Point Theory and Applications, 2014, 2014:127 (Springer, SCI, Impact Factor: 2.5).
(74) W. Long, S. Khaleghizadeh, P. Salimi, S. Radenović, S. Shukla, Some new fixed point results in partial ordered metric spaces via admissible mappings, Fixed Point Theory and Applications 2014, 2014:117 (Springer, SCI, Impact Factor: 2.5).
(75) S. Shukla, Partial rectangular metric spaces and fixed point theorems, The Scientific World Journal, Volume 2014:756298, 7 pages, (SCI, Impact Factor: 1.6).
(76) S. Shukla, M. Abbas, Fixed point results in fuzzy metric-like spaces, Iranian Journal of Fuzzy Systems, 11 (2014), 81-92 (SCI, Impact Factor: 2.100).
(77) G.S. Rad, S. Shukla, Hamidreza Rahimi, Relation between n-tuple fixed point and fixed point results, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, doi: DOI 10.1007/s13398-014-0196-0 (Springer, SCI, Impact Factor: 2.276).
(78) S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterranean Journal of Mathematics 2014, 11(2), 703-711 Switzerland (Springer, SCI, Impact Factor: 1.305).
(79) S. Shukla, R. Sen, Set-valued Prešić-Reich type mappings in metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, (2014) 108:431-440 (Springer, SCI, Impact Factor: 2.169).
(80) S. Shukla, Set-valued Prešić-Ćirić type contraction in 0-complete partial metric spaces, Matematički Vesnik, Serbia, 66, 2 (2014), 178-189 (SCOPUS).
(81) S. Shukla, S. Radenović, C. Vetro, Set-valued Hardy-Rogers type contraction in 0-complete partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Vol. 2014, Article ID 652925, 9 pages (SCOPUS).
(82) S. Shukla, M. Abbas, Fixed point results of cyclic contractions in product spaces, Carpathian Journal of Mathematics, 31(1) (2014) 119-126 (SCI, Impact Factor: 1.36).
(83) S.K. Malhotra, S. Shukla, J.B. Sharma, Cyclic contractions in θ-complete cone metric spaces and fixed point theorems, Jordan Journal of Mathematics and Statistics 2014, 7(3), 233-246. (SCOPUS).
(84) S. Shukla, Reich type contractions on cone rectangular metric spaces endowed with a graph, Theory and Applications of Mathematics & Computer Science, 4 (1) (2014) 14-25 Romania.
(85) S. Shukla, S. Radenović, Some fixed point theorems for ordered F-generalized contractions in 0-f-orbitally complete partial metric spaces, Theory and Applications of Mathematics & Computer Science 4 (1) (2014) 87-98.
(86) S. Shukla, S. Radenović, Some Prešić-Maia type theorems in ordered metric spaces, Gulf Journal of Mathematics. Vol 2, Issue 2 (2014) 73-82 (SCOPUS).
(87) S. Shukla, Set-valued generalized contraction in 0-complete partial metric spaces, Journal of Nonlinear Functional Analysis, (ESCI-Thomson Reuters, SCOPUS) 2014, 2014:6.
(88) S. Shukla, Fixed point theorems of G-fuzzy contractions in fuzzy metric spaces endowed with a graph, Communications in Mathematics 22 (2014) 1-12 (SCOPUS).
(89) S. Shukla, S. Radenović, Some Prešić-Boyd-Wong type results in ordered metric spaces, International Journal of Analysis and Applications, Vol. 5(2) (2014), 154-166 (SCOPUS).
(90) S.K. Malhotra, S. Radenović, S. Shukla, Some fixed point results without monotone property in partially ordered metric like spaces, Journal of the Egyptian Mathematical Society, (Elsevier) Volume 22, Issue 1, April 2014, Pages 83-89.
(91) S. Shukla, Prešić type results in 2-Banach spaces, Afrika Matematika, 25(4), (2014), 1043-1051. DOI 10.1007/s13370-013-0174-2 (Springer, SCOPUS).
(92) S.K. Malhotra, J.B. Sharma, S. Shukla, g-weak contraction in ordered cone rectangular metric spaces, The Scientific World Journal, Volume 2013 (2013), Article ID 810732, 7 pages (SCI, Impact Factor: 1.6).
(93) W. Long, S. Khaleghizadeh, P. Salimi, S. Radenović, S. Shukla, Some coupled coincidence and common fixed point results for hybrid pair of mappings in 0-complete partial metric spaces, Fixed Point Theory and Applications, 2013, 2013:145 (Springer, SCI, Impact Factor: 2.5).
(94) S. Shukla, S. Radojević, Zorica A. Veljković, S. Radenović, Some coincidence and common fixed point theorems for ordered Prešić-Reich type contractions, Journal of Inequalities and Applications, 2013, 2013:520 (Springer, SCI, Impact Factor: 2.021).
(95) S.K. Malhotra, S. Shukla, R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Math. Univ. Comenianae, Vol. LXXXII, 2 (2013), pp. 165-175 (SCOPUS).
(96) S.K. Malhotra, S. Shukla, R. Sen, Some fixed point results in θ-complete partial cone metric spaces, J. Adv. Math. Stud., Vol. 6(2013), No. 2, 97-108.
(97) S. Shukla, S. Radenović, Some Fixed Point Theorems for Prešić-Hardy-Rogers Type Contractions in Metric Spaces, Journal of Mathematics, Vol. 2013, Article ID 295093, 8 pages (SCOPUS, SCI Impact Factor: 1.555).
(98) S. Shukla, S. Radenović, Some common fixed point theorems for F-contraction type mappings in 0-complete partial metric spaces, Journal of Mathematics, Volume 2013, Article ID 878730, 7 pages (SCOPUS, SCI Impact Factor: 1.555).
(99) S. Shukla, Brian Fisher, A generalization of Prešić type mappings in metric-like spaces, Journal of Operators, Volume 2013 (2013), Article ID 368501, 5 pages (SCOPUS).
(100) S. Shukla, I. Altun, R. sen, Fixed point theorems and asymptotically regular mappings in partial metric spaces, ISRN Computational Mathematics, Volume 2013, Article ID 602579, 6 pages.
(101) S. Shukla, S. Radenović, Vesna Ćojbašić Rajić, Some common fixed point theorems in 0-σ-complete metric-like spaces, Vietnam Journal of Mathematics, (2013) 41:341-352 (Springer, SCOPUS).
(102) B. Popović, S. Radenović, S. Shukla, Fixed point results to TVS-cone b-metric spaces, Gulf Journal of Mathematics, Vol 1 (2013) 51-64 (SCOPUS).
(103) S. Shukla, S. Radenović, A generalization of Prešić type mappings in 0-complete ordered partial metric spaces, Chinese Journal of Mathematics, Volume 2013, Article ID 859531, 8 pages.
(104) S. Shukla, Fuzzy H-weak contractions and fixed point theorems in fuzzy metric spaces, Gulf Journal of Mathematics Vol 2 (2013) 67-75 (SCOPUS).
(105) S.K. Malhotra, S. Shukla, R. Sen, Some Coincidence and Common Fixed Point theorems for Prešić-Reich type Mappings in Cone Metric Spaces, Rend. Sem. Mat. Univ. Pol. Torino, Italy, Vol. 70, 3 (2012), 247-260 (SCOPUS).
(106) S.K. Malhotra, S. Shukla, R. Sen, A Generalization of Banach Contraction Principle in Ordered Cone Metric Spaces, J. Adv. Math. Stud., Vol. 5(2012), No. 2, 59-67.
(107) S.K. Malhotra, S. Shukla, R. Sen, Some Coincidence and Common Fixed Point Theorems in Cone Metric Spaces, Bulletin of Mathematical Analysis and Applications, (BMAA) Volume 4 Issue 2 (2012) 67-71.
(108) S.K. Malhotra, R. Sen, S. Shukla, Common Fixed Point theorems for Non Expansive Gregǔs Type Maps in Metrizable Spaces, Asian Journal of Current Engineering and Maths, 2 March-April(2012) 39-41.
(109) S.K. Malhotra, R. Sen, S. Shukla, Extension of Fixed Point Theorem for Non Expansive Gregǔs Type Mapping, International Journal of Nonlinear Science, Vol.12 (2011) No. 4, 448-451.
(110) S.K. Malhotra, S. Shukla, R. Sen, T- Reich Mapping in Topological Vector Space-Valued Cone Metric Spaces, Mathematica Aeterna, Vol. 1, 2011, no. 06, 353-359.
(111) S.K. Malhotra, S. Shukla, R. Sen, Fixed Point Theorems in Cone Metric Spaces by Altering Distances, International Mathematical Forum, Vol. 6, 2011, no. 54, 2665-2671
(112) S.K. Malhotra, S. Shukla, R. Sen, Common fixed point theorems in cone metric space by altering distances, Mathematica Aeterna, Vol. 1, 2011, no. 06, 347-352.
(113) S.K. Malhotra, A. Rajput, A. Shrivastava, R. Sen, S. Shukla, Common Fixed Point theorems and generalization of Reich type mapping in cone metric spaces, Research Journal of Pure algebra, 1(8) 2011, page 176-183.
(114) S.K. Malhotra, S. Shukla, R. Sen, N. Verma, Generalization of Fixed Point theorems in partial cone metric spaces, International Journal of Mathematical Archive 2(4), Apr.- 2011, pages 610-616.