30 hours
Tentative Schedule : 5 weeks ( 6 hours / week )
Introduction to Machine Learning
Regression Algorithms
Linear Regression
K Nearest Neighbours
Decision Tree
Classification
Logistic Regression
K Nearest Neighbours
Decision Tree
Parameter Tuning
Cross Validation
Hyper Parameter Tuning
Deep Learning Basics
Neural Networks
Linear Regression with Keras
6. Basic Evaluation Metrics
RMSE
MSE
Precision
Recall
Confusion Matrix
7. Time Series Analysis
DateTime Transformations
ARIMA
SARIMA
ML for TimeSeries
8. Unsupervised Learning
K-Means
Hierarchical Clustering
PCA