BBICLΒ Research Focusing on...
1. Structure-Function Insights into Metalloenzymes via Biomimetic ComplexesΒ
We are developing diverse biomimetic model complexes for enzymes such as phenoxazinone synthase (PHS), lytic polysaccharide monooxygenases (LPMO), catechol oxidase, methane monooxygenase (MMO), etc. Performing mechanistic investigations to gain deeper insights into their catalytic processes.Β
T. P. Mohammed, M. Velusamy, M. Sankaralingam, Bioinspired copper (II) complexes catalyzed oxidative coupling of aminophenols with broader substrate scope. J. Inorg. Biochem., 2025, 270, 112906. https://doi.org/10.1016/j.jinorgbio.2025.112906
T. P Mohammed, S. Roy and M. Sankaralingam*, Copper(II) Complex of Pentadentate N5 Ligand as Catalyst for 2-Aminophenol Oxidation, Inorg. Chim. Acta, 2025, 574, 122372. https://doi.org/10.1016/j.ica.2024.122372Β
T. P Mohammed, A. George, M. P. Sivaramakrishnan, P. Vadivelu, S. Balasubramanian, M. Sankaralingam*, Deciphering the Effect of Amine Versus Imine Ligands of Copper(II) Complexes in 2-Aminophenol Oxidation, J. Inorg. Biochem., 2023, 247, Article No: 112309. https://doi.org/10.1016/j.jinorgbio.2023.112309
A. S. Thennarasu#, T. P. Mohammed#, M. Sankaralingam*, Mononuclear copper(II) Schiff base complexes as effective models for phenoxazinone synthase, New J. Chem., 2022, 46, 21684β21694. (# equally contributed). https://doi.org/10.1039/D2NJ03934F.
A. Rajeev, M. Balamurugan, M. Sankaralingam*, Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogenous Approach, ACS Catal., 2022, 12(16), 9953β9982. https://doi.org/10.1021/acscatal.2c01928
2. Metal-Oxygen Intermediates in Dioxygen ActivationΒ
Transition metal-oxygen intermediates, like metal-superoxo, -peroxo, -hydroperoxo, -oxo species, have been synthesized using various oxidants and studied for their electrophilic and nucleophilic oxidation reactionsΒ
1. D. D. Malik, W. Ryu, Y. Kim, G. Singh, J.-H. Kim, M. Sankaralingam, Y.-M. Lee, M. S. Seo, M. Sundararajan, D. Ocampo, M. Roemelt,* K. Park,* S. H. Kim,* M.-H. Baik,* J. Shearer,* K. Ray,* S. Fukuzumi,* and W. Nam*, Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates, J. Am. Chem. Soc., 2024, 146, 13817-13835. https://doi.org/10.1021/jacs.3c14346Β
2. T. P. Mohammed, M. Sankaralingam*, Reactivities of high valent manganese-oxo porphyrins in aqueous medium, Tetrahedron, 2022, 103, Article No: 132483. Special issue: βSustainable Catalysisβ entitled βEarth Abundant Metal-Catalyzed Sustainable Organic Transformationsβ. https://doi.org/10.1016/j.tet.2021.132483
Β 3. D. S. Harmalkar, G. Santosh, S. B. Shetgaonkar, M.Sankaralingam,* S. N. Dhuri*, A putative heme manganese(V)-oxo species in the C-H activation and epoxidation reactions in an aqueous buffer, New J. Chem., 2019, 43, 12900-12906.
Selected as a cover page for the issue New J. Chem., 2019, 43, 12877-12878.
Bio-inorganic Catalysis
Transition Metal Catalysts for Organic TransformationsΒ
Inspired by cytochrome P450, we have developed cheap and efficient nickel catalysts for industrially important C-H bond activation and other organic transformation reactions.
1.Β A. Rajeev,# S. Muthuramalingam,# V. P. Murugan, M. Costas, P. Vadivelu,* and M. Sankaralingam*, Unveiling the Catalytic Activity of Nickel(II) Complexes of Pentadentate Ligands in Aromatic Oxidations, ChemCatChem. 2025, 17, e202401645. #equivally contributed) https://doi.org/10.1002/cctc.202401645
2. A. Rajeev, S. Muthuramalingam and M. Sankaralingam*, Selective Synthesis of Cyclic Alcohols from Cycloalkanes using Nickel(II) Complexes of Tetradentate Amidate Ligands, RSC Adv., 2024, 14, 30440β30451. https://doi.org/10.1039/D4RA05222F.
3. A. Rajeev, A.T. Thomas, A. Das and M. Sankaralingam*, C-H Bond Activation Facilitated by Nickel(II) Complexes Having Mighty Claws, Eur. J. Inorg. Chem., 2024, 27, e202400205. https://doi.org/10.1002/ejic.202400205.
4. A. Rajeev, M. Balamurugan, M. Sankaralingam*, Rational Design of First-Row Transition Metal Complexes as the Catalysts for Oxidation of Arenes: A Homogenous Approach, ACS Catal., 2022, 12(16), 9953β9982. https://doi.org/10.1021/acscatal.2c01928
5. D. S. Harmalkar, G. Santosh, S. B. Shetgaonkar, M.Sankaralingam,* S. N. Dhuri*, A putative heme manganese(V)-oxo species in the C-H activation and epoxidation reactions in an aqueous buffer, New J. Chem., 2019, 43, 12900-12906. https://doi.org/10.1039/C9NJ01381DΒ
Medicinal Chemistry
Earth-Abundant Metallodrugs
Investigating the potential of earth-abundant transition metal complexes for biomedical applications.
A. Das, M. Sankaralingam*, Unravelling the Mechanism of Apoptosis Induced by Copper(II) Complexes of NN2 Pincer Ligands in Lung Cancer Cells, Dalton Trans., 2024, 53, 14364-14377. https://doi.org/10.1039/D4DT01075B.
T. P Mohammed, A. S. Thennarasu, R. Jothi, S. Gowrishankar, M. Velusamy, S. Patra, and M. Sankaralingam*, Investigation of the inherent characteristics of copper(II) Schiff base complexes as antimicrobial agents, New. J. Chem., 2024, 48, 12877-12892. https://doi.org/10.1039/D4NJ01271B.
A. Das, R. Sangavi, S. Gowrishankar, R. Kumar, M. Sankaralingam*, Deciphering the Mechanism of MRSA Targeting Copper(II) Complexes of NN2 Pincer Type Ligands, Inorg. Chem., 2023, 62, 18926β18939. https://doi.org/10.1021/acs.inorgchem.3c02480.
A. Das, T. P. Mohammed, M. Sankaralingam*, Biological Activity of Copper Porphyrins, Coord. Chem. Rev., 2024, 506, 215661. https://doi.org/10.1016/j.ccr.2024.215661
A. Das, M. Sankaralingam*, Are Zn(II) pincer complexes efficient apoptosis inducers? A deep insight into their activity against A549 lung cancer cells, Dalton Trans., 2023, 53, 14465-14476. https://doi.org/10.1039/D3DT02419A
A. Das, T. P. Mohammed, R. Kumar, S. Bhunia, M. Sankaralingam*, Carbazole appended trans-dicationic pyridinium porphyrin finds supremacy in DNA binding/photocleavage over non-carbazolyl analogue, Dalton Trans., 2022, 51, 12453-12466. Selected as a cover page for the issue. https://doi.org/10.1039/D2DT00555GΒ
Green Chemistry Studies
Small Molecule Activation (O2, H2, H2O, CO2, CH4)
We are also working on developing sustainable catalytic systems to enhance energy efficiency and reduce environmental impact like green H2 production, methane to methanol conversion, etc.
A. Rajeev,# T. P. Mohammed,# A. George,# and M. Sankaralingam*, Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies, Chem. Rec. 2025, 25, e202400186. (# equivally contributed) https://doi.org/10.1002/tcr.202400186.
S. Patra#, A. Das#, S. Bhunia, A. Rajeev, M. Sankaralingam* Electrocatalytic Production of Hydrogen using Nickel Complexes with Tridentate N3 Ligands, Catal Today, 2023, 423, Article No: 113972 (#equally contributed). https://doi.org/10.1016/j.cattod.2022.12.003. Β
S. Patra#, A. Das#, S. Bhunia, A. Rajeev, and M. Sankaralingam* Electrocatalytic Production of Hydrogen using Nickel Complexes with Tridentate N3 Ligands, Catal. Today, 2023, 423, 13972. (#equally contributed)
M. M. Kandy,* A. Rajeev K, and M. Sankaralingam,* Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide, Sustain. Energy Fuels., 2021, 5, 12-33.
Facilities...
NMR Spectrophotometer - 500 MHz JEOL ECZR
-Under CMC of NITC
HRMS - Waters Synapt XS
-DST-FIST Funded @ Dept of Chemistry NITC
Agilent 8860 GC System
-Funded by DST- Inspire to Dr MS
Agilent 8454 Cary - UV-Visible Diode array Spectrophotometer
-Funded by DST- Inspire to Dr MS
Rotary Evaporator-Buchi R3
Fume Hood equipped with Blower, Baffles, Vacuum pump, etc.
-Funded by DST- Inspire to Dr MS