Publications
Sanjeena’s Google Scholar author profile.
Publications: Appeared and Accepted
Silva, A., Qin, X., Rothstein, S. J., McNicholas, P. D., and Subedi, S. `Finite Mixtures of Matrix Variate Poisson- Log Normal Distributions for Three-Way Count Data'. Bioinformatics. To Appear.
Ciobani, C., Mcnairn, C., Nyiri, B., Chauhan, V., Subedi, S., and Murugkar, S. `Exploring the use of Raman spectroscopy and covariate-adjusted multivariate analysis for the detection of irradiated blood'. Radiation Research. To Appear.
Tu, W. and Subedi, S. Penalized logistic normal multinomial factor analyzers for high dimensional compositional data. Journal of Statistical Research. To Appear.
Beausoleil-Morrison, A., McNairn, C., Qin, X. Ciobanu, C., Altwasser, K., Subedi, S., Chauhan, V., Murugkar, S. (2023) `Application of Raman spectroscopy and multivariate analysis to detect ionizing radiation-induced changes in blood plasma'. Proceedings SPIE 12373, Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis, 123730A.
Fang, Y., Karlis, D., and Subedi, S. (2022) `An infinite mixtures of multivariate normal-inverse Gaussian distributions for clustering of skewed data'. Journal of Classification. 39, 510-552.[doi]
Yu, J., Tu, W., Payne, A., Rudyk, C., Cuadros Sanchez, S., Khilji, S., Kumarathasan, P., Subedi, S., Haley, B., Wong, A. and Anghel, C., (2022) `Adverse Outcome Pathways and Linkages to Transcriptomic Effects Relevant to Ionizing Radiation Injury’. International Journal of Radiation Biology. 98(12) 1789-1801 [doi].
Tu, W. and Subedi, S., (2022) `A family of mixture models for biclustering'. Statistical Analysis and Data mining. 15(2) 206-224 [doi] [R-Code] [Preprint].
Subedi, S. and McNicholas, P. D. (2021), `A variational approximations-DIC rubric for parameter estimation and mixture model selection within a family setting. Journal of Classification. 38(1) 89–108 [doi].
Subedi, S. and Browne, R. P. (2020) A parsimonious family of multivariate Poisson-lognormal distributions for clustering multivariate count data. Stat. 9(1) e310 [doi].
Subedi, S., Neish, D., Bak, S., and Feng, Z. (2020)`Cluster analysis of microbiome data via mixtures of Dirichlet-multinomial regression models’. Journal of Royal Statistical Society: Series C. 69(5) 1163-1187 [doi].
Malik, M., Subedi, S., Marques, C.N.H, and Mahler, G. (2020)`Bacteria remediate the effects of food additives on intestinal function in an in vitro model of the gastrointestinal tract'. Frontiers in Nutrition. 7 131[doi].
Silva, A., Rothstein, S. J., McNicholas, P. D. Subedi, S. (2019) A Multivariate Poisson-Log Normal Mixture Model for Clustering Transcriptome Sequencing Data. BMC Bioinformatics. 20(1) 394 [doi].
Dang, S. and Vialaneix, N. (2018) Cutting Edge Bioinformatics and Biostatistics Approaches Are Bringing Precision Medicine and Nutrition to a New Era. Lifestyle Genomics 1–4 [doi].
Flaherty, E. J., Lum, G. B., DeEII, J. R., Subedi, S., Shelp, B. J., Bozzo, G. G. (2018) Metabolic Alterations in Postharvest Pear Fruit As Influenced by 1-Methylcyclopropene and Controlled Atmosphere Storage. Journal of Agricultural Food and Chemistry, 66(49) 12989-12999 [doi].
Brikis, C.J., Zarei, A., Chiu,G.Z., Deyman, K. L., Liu, J., Trobacher, C. P., Hoover, G.J., Subedi, S., DeEll, J. R., Bozzo, G. G., Shelp, B.J. (2018) Targeted quantitative profiling of metabolites and gene transcripts associated with 4-aminobutyrate (GABA) in apple fruit stored under multiple abiotic stresses. Horticulture Research, 5(1) 61 [doi].
Liu, J., Abdelmagid, S. A., Pinelli, C. J., Monk, J.M., Liddle, D.M., Hillyer, L. M., Hucik, B., Silva, A., Subedi, S., Wood, G. A., Robinson, L. E., Muller, W. J., and Ma, D. W.L. (2018) Marine fish oil is more potent than plant based n-3 polyunsaturated fatty acids in the prevention of mammary tumours. The Journal of Nutritional Biochemistry. 55 41–52 [doi].
Carbonara, J., Dang, S., Gelsomini, F., Kanev, K., Sperhac, J., Walters, L. (2017) A Multifaceted Approach Towards Education in Data Analytics. Recent Advances in Technology Research and Education: Proceedings of the 16th International Conference on Global Research and Education Inter-Academia 2017 660 307 [doi].
Coutin, J. A. F., Munholland, S., Silva, A., Subedi, S., Lukens, L., Crosby, W. L., … & Bozzo, G. G. (2017). ‘Proanthocyanidin accumulation and transcriptional responses in the seed coat of cranberry beans (Phaseolus vulgaris L.) with different susceptibility to postharvest darkening’. BMC Plant Biology, 17(1), 89 [doi].
Lum, G. B., DeEll, J. R., Hoover, G. J., Subedi, S., Shelp, B. J., & Bozzo, G. G. (2017). ‘1-Methylcylopropene and controlled atmosphere modulate oxidative stress metabolism and reduce senescence-related disorders in stored pear fruit’. Postharvest Biology and Technology, 129, 52-63 [doi].
Roke, K., Walton, K., Klingel, S. L., Harnett, A., Subedi, S., Haines, J., & Mutch, D. M. (2017). `Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention’. Nutrients, 9(3), 240 [doi].
Lum, G. B., Brikis, C. J., Deyman, K. L., Subedi, S., DeEll, J. R., Shelp, B. J., & Bozzo, G. G. (2016). ‘Pre-storage conditioning ameliorates the negative impact of 1-methylcyclopropene on physiological injury and modifies the response of antioxidants and γ-aminobutyrate in ‘Honeycrisp’apples exposed to controlled-atmosphere conditions’. Postharvest Biology and Technology, 116, 115-128 [doi].
Sung, Y., Feng, Z., Subedi, S. (2016), ‘A genome-wide association study of multiple longitudinal traits with related subjects’, Stat. 5(1),22-44 [doi].
Lum, G. B., Brikis, C. J., Deyman, K. L., Subedi, S., DeEII, J. R., Shelp, B. J., Bozzo, G. B. (2016), ‘Pre-storage conditioning ameliorates the negative impact of 1-methylcyclopropene on physiological injury and alters the response of antioxidants and γ-aminobutyrate in `Honeycrisp’ apples exposed to controlled-atmosphere conditions’, Postharvest Biology and Technology. 116,115-128 [doi].
McNicholas, P.D. and Subedi, S. (2016), ‘Discussion of “Perils and potentials of self-selected entry to epidemiological studies and surveys”‘, Journal of the Royal Statisical Society: Series A. 179(2), 362-363 [doi].
Subedi, S., Punzo, A., Ingrassia, S. and McNicholas, P.D. (2015), ‘Cluster-Weighted t-Factor Analyzers for Robust Model-based Clustering and Dimension Reduction’. Statistical Methods and Applications.24(4), 623-649. [doi].
Subedi, S. and McNicholas, P. D. (2015), ‘Discussion of “Analysis of forensic DNA mixtures with artefacts'”, Journal of the Royal Statistical Society: Series C 64(1), 43-44. [doi].
Misyura, M., Guevara, D., Subedi, S., Hudson, D., McNicholas, P. D., Colasanti, J, and Rothstein, S. (2014), ‘Nitrogen limitation and high density stress responses in rice suggest a role for ethylene in intraspecific competition’, BMC Genomics 15(1), 681. [doi]
Subedi, S. and McNicholas, P. D. (2014), ‘Variational Bayes Approximations for Clustering via Mixtures of Normal Inverse Gaussian Distributions’, Advances in Data Analysis and Classification 8(2), 167-193. [doi]
Makhmudova, A., Williams, D., Brewer, D., Massey, S., Patterson, J., Silva, A, Vassall, K., Liu, F., Subedi, S., Harauz, G., Siu, K. W. M., Tetlow, I. J. and Emes, M. J. (2014), ‘Identication of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis’, Journal of Biological Chemistry 289(13), 9233-9246. [doi]
Subedi, S., Punzo, A., Ingrassia, S. and McNicholas, P. D. (2013), `Clustering and classification via cluster-weighted factor analyzers’, Advances in Data Analysis and Classification 7(1), 5-40. [doi]
Humbert, S., Subedi, S., Zeng, B., Bi, Y., Chen,X., Zhu, T., McNicholas, P. D., Rothstein, S. J. (2013), `Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses’, BMC Genomics 14(3). [doi]
Subedi, S., Feng, Z. Z., Deardon, R. and Schenkel, F. (2013), `SNP selection for predicting a quantitative trait’, Journal of Applied Statistics 40(3), 600-613. [doi]
McNicholas, P. D. and Subedi, S. (2012), `Clustering gene expression time course data using mixtures of multivariate t-distributions’,Journal of Statistical Planning and Inference 142(5), 1114-1127. [doi]
Feng, Z, Yang, X., Subedi, S. and McNicholas, P. D. (2012), `The LASSO and sparse least square regression methods for SNP selection in predicting quantitative traits’, IEEE Transactions on Computational Biology and Bioinformatics 9(2), 629-63. [doi]
Andrews, J. L., McNicholas, P. D. and Subedi, S. (2011), `Model-based classification via mixtures of multivariate t-distributions’, Computational Statistics and Data Analysis 55(1), 520-529. [doi]
Refereed Journal Articles: Submitted / In preparation
Livochkaa, A., Browne, R., and Subedi, S. Estimation of Gaussian bi-clusters with general block-diagonal covariance matrix and applications. Submitted
Fang, Y., Karlis, D., Subedi, S., A Bayesian Approach for Clustering Skewed Data Using Mixtures of Multivariate Normal-Inverse Gaussian Distributions. Submitted.
Subedi, S. Clustering matrix variate longitudinal count data. Submitted.
Tu, W. and Subedi, S. Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data. Submitted.
Fang, Y., Karlis, D., and Subedi, S. A Bayesian Approach for Clustering Skewed Data Using Mixtures of Multivariate Normal-Inverse Gaussian Distributions. In preparation.
Fang, Y. and Subedi, S. Variational inference of logistic-normal multinomial mixture model for clustering microbiome data. In preparation.
Tu, W., Fang, Y., and Subedi, S. Logistic Normal Multinomial Biclustering Mixture Model for Microbiome Count Data. In preparation.
Non-Refereed Contributions
Subedi, S. (2012), `Variational Approximations and Other Topics in Mixture Models’, Ph.D. thesis, University of Guelph.
Subedi, S. (2009), `Genome Selection for Predicting the Estimated Breeding Value of Canadian Holstein Cattle’, Master’s thesis, University of Guelph.
Andrews, J. L., Diaz Bobadilla, I. E., Huang, Y., Kitchen, C., Malenfant, K., Moloney, P. D., Steane, M. A., Subedi, S., Xu, R., Zhang, X., McNicholas, P. D. and Stockie, J. M. (2009), `Early detection of important animal health events’ in Proceedings of the PIMS-MITACS Industrial Problem Solving Workshop, Calgary, Alberta.
Andrews, J. L., Haroutunian J., Steane, M. A., Subedi, S., Zhang, X. and McNicholas, P. D. (2009), `Automatic classification and variable reduction for food authenticity problems’ in Proceedings of the PIMS-MITACS Graduate Industrial Mathematical Modelling Camp, Calgary, Alberta.