Note: All impact factors (IF) mentioned below are as per the Thomson Reuters database.
Preprints:
Stability and Bifurcation Analysis of Two-Term Fractional Differential Equation with Delay Sachin Bhalekar, Deepa Gupta, arXiv preprint arXiv:2404.01824, 2024 https://arxiv.org/abs/2404.01824
Analysis of Stability, Bifurcation, and Chaos in Generalized Mackey-Glass Equations, Deepa Gupta, Sachin Bhalekar, arXiv:2411.02865v1 https://doi.org/10.48550/arXiv.2411.02865
Analysis of the maps with variable fractional order, Prashant M Gade, Sachin Bhalekar, Janardhan Chevala, arXiv:2502.07290v1 https://doi.org/10.48550/arXiv.2502.07290
Publications:
2025
74. Solving Fredholm integro-differential equations using hybrid and block-pulse functions, Aline Hosry, Roger Nakad, Sachin Bhalekar, Computational Mathematics and Mathematical Physics, (2025), Accepted.
73. Analysis of a Class of Two-delay Fractional Differential Equation, Sachin Bhalekar, Pragati Dutta, Chaos, 35(1), (2025) 013155.
72. Dynamical Analysis Of Fractional Order Generalized Logistic Map, Sachin Bhalekar, Janardhan Chevala, Prashant M. Gade, Computational Mathematics and Mathematical Physics 65(2), (2025) 424–441
2024
71. Fractional Order Sunflower Equation: Stability, Bifurcation and Chaos, Deepa Gupta, Sachin Bhalekar, The European Physical Journal Special Topics, Accepted for publication, (2024). Impact Factor: 2.6
70. Corrigendum to:“Stability and dynamics of complex order fractional difference equations”[Chaos Solitons Fractals 158 (2022) 112063], Chaos, Solitons & Fractals, 187 (2024) 115406. https://doi.org/10.1016/j.chaos.2024.115406
69. Bidirectional Coupling in Fractional Order Maps of Incommensurate Orders, S. Bhalekar, P. M. Gade, D. D. Joshi, Chaos, Solitons & Fractals, 186 (2024) 115324. https://doi.org/10.1016/j.chaos.2024.115324
68. Stability Analysis of Fractional Difference Equations with Delay, D. D. Joshi, S. Bhalekar, P. M. Gade, Chaos, 34 (2024) 053111. https://doi.org/10.1063/5.0196723
IF: 2.9
2023
67. Fractional-Order Periodic Maps: Stability Analysis and Application to the Periodic-2 Limit Cycles in the Nonlinear Systems, S. Bhalekar, P. M. Gade, Journal of Nonlinear Science, 33, (2023) Article number: 119. https://doi.org/10.1007/s00332-023-09978-y Impact Factor: 3.0
66. Stability Analysis of Hilfer Fractional Order Differential Equations, A. Hegade and S. Bhalekar, The European Physical Journal Special Topics, (2023). https://doi.org/10.1140/epjs/s11734-023-00960-z Impact Factor: 2.8
65. Maxey-Riley Equation: Newer Perspective, A. Hegade, V. Daftardar-Gejji and S. Bhalekar, International Journal of Dynamics and Control, (2023), https://doi.org/10.1007/s40435-023-01268-5. (Scopus Indexed)
64. Can a Fractional Order Delay Differential Equation be Chaotic Whose Integer-Order Counterpart is Stable?, S. Bhalekar and D. Gupta, 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), Ajman, United Arab Emirates, 2023, IEEE Xplore, pp. 1-6, https://doi.org/10.1109/ICFDA58234.2023.10153327 . (Scopus Indexed)
63. Controlling fractional difference equations using feedback, D. D. Joshi, S. Bhalekar, P. M. Gade, Chaos, Solitons & Fractals, 170 (2023) 113401.; https://doi.org/10.1016/j.chaos.2023.113401 Impact Factor: 9.922
2022
62. Study of Low-dimensional Nonlinear Fractional Difference Equations of Complex Order, D. D. Joshi, P. M. Gade, S. Bhalekar, Chaos 32, 113101 (2022); https://doi.org/10.1063/5.0095939 Impact Factor: 3.741
61. Stability and Bifurcation Analysis of Incorporating Two Species Prey-Predator Model with External Factors, Priyanka M, Muthukumar P., S. Bhalekar, International Journal of Bifurcation and Chaos, 32 (11), 2250172 (2022).
DOI:10.1142/S0218127422501723 Impact Factor: 2.450
60. Stability and bifurcation analysis of a fractional order delay differential equation involving cubic nonlinearity, S. Bhalekar, D. Gupta, Chaos, Solitons & Fractals, 162 (2022) 112483. https://doi.org/10.1016/j.chaos.2022.112483 Impact Factor: 9.922
59. Stability analysis of fixed point of fractional-order coupled map lattices, S. Bhalekar, P.M. Gade, Communications in Nonlinear Science and Numerical Simulation, 113 (2022) 106587. https://doi.org/10.1016/j.cnsns.2022.106587
58. Stability and dynamics of complex order fractional difference equations, S. Bhalekar, P.M. Gade, D. Joshi, Chaos, Solitons & Fractals, 158 (2022) 112063. https://doi.org/10.1016/j.chaos.2022.112063
57. Synchronization in coupled integer and fractional-order maps, S. Pakhare, S. Bhalekar, P.M. Gade, Chaos, Solitons & Fractals, 156 (2022) 111795. https://doi.org/10.1016/j.chaos.2022.111795
2021
56. On fractional order maps and their synchronization, P. M. Gade, S. Bhalekar, Fractals, 29(6) (2021), Article Number 2150150. https://doi.org/10.1142/S0218348X21501504
55. Modified DJ method: Application to Boussinesq equation, J. Patade, S. Bhalekar, Mathematics in Engineering, Science and Aerospace, 12(3) (2021) 339–679.
2020
54. Nonexistence of invariant manifolds in fractional-order dynamical systems, S. Bhalekar, M. Patil, Nonlinear Dynamics 102(4) (2020) 2417-- 2431. https://doi.org/10.1007/s11071-020-06073-9
53. A Hybrid Function Approach to Solving a Class of Fredholm and Volterra Integro-Differential Equations. A. Hosry, R. Nakad, and S. Bhalekar, Mathematical and Computational Application, 25(2), (2020) 30. https://doi.org/10.3390/mca25020030
52. Analysis of solution trajectories of fractional order systems, M. Patil and S. Bhalekar, Pramana - J Phys 94, 89 (2020). https://doi.org/10.1007/s12043-020-01951-8
51. A Novel Numerical Method for Solving Volterra Integro-Differential Equations, S. Bhalekar and J. Patade, International Journal of Applied and Computational Mathematics, 6, (2020) 7. https://doi.org/10.1007/s40819-019-0762-4
2019
50. Numerical solution of stiff systems by using new numerical method, S. Bhalekar and J. Patade, Malaya Journal of Matematik : Special Issue, 1, (2019), 652-655.
49. Analysing the stability of a delay differential equation involving two delays, S. Bhalekar, Pramana, 93, (2019) 24. DOI: 10.1007/s12043-019-1783-6 IF 1.185
48. Can we split fractional derivative while analyzing fractional differential equations?, S. Bhalekar, M. Patil, Communications in Nonlinear Science and Numerical Simulation,
76, (2019) 12-24. DOI: 10.1016/j.cnsns.2019.04.009 IF 3.967
2018
47. Singular points in the solution trajectories of fractional order dynamical systems, S Bhalekar, M. Patil, Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (11), (2018) 113123. https://doi.org/10.1063/1.5054630 IF 2.643
2017
46. Hyperchaotic Fractional-Order Systems and Their Applications, A Elsaid, DFM Torres, S Bhalekar, A Elsadany, A Elsonbaty, Complexity, Volume 2017, Article ID 7476090, https://doi.org/10.1155/2017/7476090. IF 2.591
45. Series Solution of the Pantograph Equation and Its Properties, S. Bhalekar, J. Patade, Fractal and Fractional 1 (1) (2017) 16.
44. Analytical solution of pantograph equation with incommensurate delays, J. Patade and S. Bhalekar, Physical Sciences Reviews, (2017), 20160103.
DOI: 10.1515/psr-2016-0103
43. On Analytical Solution of Ambartsumian Equation, J. Patade, S. Bhalekar, National Academy Science Letters, 40(4) (2017) 291-293. DOI 10.1007/s40009-017-0565-2. IF 0.519
2016
42. Analytical solutions of nonlinear equations with proportional delays, S Bhalekar, J Patade, Applied and Computational Mathematics, 15(3) (2016) 331-345. IF 2.365
41. Stability and bifurcation analysis of a generalized scalar delay differential equation, S. Bhalekar, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(8), (2016) 084306 doi: 10.1063/1.4958923 IF 2. 643
40. An analytical solution of Fisher’s equation using decomposition method, S Bhalekar, J Patade, American Journal of Computational and Applied Mathematics, 6 (3), 123-127
39. Chaos in fractional order financial delay system, S. Bhalekar, V. Daftardar-Gejji, Computers and Mathematics with Applications, (2016) In Press, doi: 10.1016/j.camwa.2016.03.009 IF 1.860
2015
38. Stability analysis of Ucar prototype delayed system, S. Bhalekar, Signal, Image and Video Processing, 10(4) (2016) 777-781. doi: 10.1007/s11760-015-0811-3. IF 1.643
37. A New Numerical Method Based on Daftardar-Gejji and Jafari Technique for Solving Differential Equations, J. Patade, S. Bhalekar, World Journal of Modelling and Simulation, 11(4) (2015) 256-271.
36. Approximate analytical solutions of Newell-Whitehead-Segel equation using a
new iterative method, J. Patade, S. Bhalekar, World Journal of Modelling and Simulation, 11(2) (2015), 94-103.
2014
35. Solving fractional delay differential equations: A new approach, V. Daftardar-Gejji, Y. Sukale, S. Bhalekar, Fractional Calculus and Applied Analysis, 18 (2), (2015) 400-418 https://doi.org/10.1515/fca-2015-0026. IF 2.865
34. Chaos in the Fractional Order Nonlinear Bloch Equation with Delay, D. Baleanu, R. Magin, S. Bhalekar, V. Daftardar-Gejji, Communications in Nonlinear Science and Numerical Simulation 25(1) (2015) 41-49. doi:10.1016/j.cnsns.2015.01.004 IF: 3.181
33. A new predictor–corrector method for fractional differential equations, V Daftardar-Gejji, Y Sukale, S Bhalekar, Applied Mathematics and Computation 244, (2014). 158-182. DOI: 10.1016/j.amc.2014.06.097 IF 2.300
32. Synchronization of incommensurate non-identical fractional order chaotic systems using active control, S. Bhalekar, The European Physical Journal- Special Topics, 223(8) (2014) 1495-1508. DOI: 10.1140/epjst/e2014-02184-0 IF 1.947
31. Synchronization of non-identical fractional order hyperchaotic systems using active control, S. Bhalekar, World Journal of Modelling and Simulation 10 (1), (2014) 60-68
2013
30. On the Ucar prototype model with incommensurate delays, S. Bhalekar, Signal, Image and Video Processing, 8(4), (2014) 635-639. DOI: 10.1007/s11760-013-0595-2 IF 1.643
29. Dynamics analysis of fractional order Yu-Wang system, S. Bhalekar, Central European Journal of Physics, 11(10), (2013) 1514-1522. DOI: 10.2478/s11534-013-0307-0. IF 1.085
28. Stability analysis of a class of fractional delay differential equations, S. Bhalekar, Pramana- Journal of Physics, 81(2) (2013) 215-224. DOI: 10.1007/s12043-013-0569-5 IF 0.699
27. Corrigendum to ‘‘Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method’’ [Applied Mathematics and Computation 202 (2008) 113–120], S. Bhalekar, V. Daftardar-Gejji, Applied Mathematics and Computation, 219(16) (2013) 8413–8415. http://dx.doi.org/10.1016/j.amc.2013.02.072 IF 2.300
26. Infinite-scroll attractor generated by the complex pendulum model, S. Bhalekar, International Journal of Analysis, 2013 (2013) Article ID 368150. http://dx.doi.org/10.1155/2013/368150
2012
25. Forming Mechanizm of Bhalekar-Gejji Chaotic Dynamical System, S. Bhalekar, American Journal of Computational and Applied Mathematics, 2(6) (2012) 257-259 DOI: 10.5923/j.ajcam.20120206.03
24. Solving fractional order logistic equation using a new iterative method, S. Bhalekar, V. Daftardar-Gejji, International Journal of Differential Equations, 2012 (2012) Article ID 975829. doi: 10.1155/2012/975829.
23. Chaos Control and Synchronization in Fractional-Order Lorenz-Like System, S. Bhalekar, International Journal of Differential Equations, 2012 (2012) Article ID 623234. doi:10.1155/2012/623234.
22. Solving a System of Nonlinear Functional Equations Using Revised New Iterative Method, S. Bhalekar, V. Daftardar-Gejji, International Journal of Computational and Mathematical Sciences, 6 (2012) 127-131.
21. Solving Partial Integro-Differential Equations Using Laplace Transform Method, J. Thorwe, S. Bhalekar, American Journal of Computational and Applied Mathematics, 2(3) (2012) 101-104 DOI: 10.5923/j.ajcam.20120203.06.
20. Numeric-analytic solutions of dynamical systems using a new iterative method, S. Bhalekar, V. Daftardar-Gejji, Journal of Applied Nonlinear Dynamics, 1(2) (2012) 141-158. DOI : 10.5890 /JAND.2012.05.003
19. Dynamical analysis of fractional order Ucar prototype delayed system, S. Bhalekar, Signals, Image and Video Processing, 6(3) (2012) 513-519. DOI: 10.1007/s11760-012-0330-4. IF 1.643
18. Dynamics of fractional ordered Chen system with delay, V. Daftardar-Gejji, S. Bhalekar and P. Gade, Pramana- Journal of Physics, 79(1) (2012) 61-69.
DOI: 10.1007/s12043-012-0291-8 IF 0.699
17. Transient chaos in fractional Bloch equations, S. Bhalekar, V. Daftardar-Gejji, D. Baleanu and R. Magin, Computers and Mathematics with Applications, 64(10) (2012) 3367-3376. doi:10.1016/j.camwa.2012.01.069 IF 1.860
2011
16. Convergence of the new iterative method, S. Bhalekar, V. Daftardar-Gejji, International Journal of Differential Equations, 2011 (2011), Article ID 989065, doi: 10.1155/2011/989065
15. Anti-synchronization of non-identical fractional order chaotic systems using active control, S. Bhalekar, V. Daftardar-Gejji, International Journal of Differential Equations, 2011 (2011), Article ID 250763, doi:10.1155/2011/250763
14. A Predictor-Corrector Scheme For Solving Nonlinear Delay Differential Equations Of Fractional Order, S. Bhalekar, V. Daftardar-Gejji, Journal of Fractional Calculus and its Applications, 1(5) (2011) 1-8.
13. Generalized fractional order Bloch equation with extended delay, S. Bhalekar, V. Daftardar-Gejji, D. Baleanu and R. Magin, International Journal of Bifurcation and Chaos, 22(4) (2012), 1250071. DOI: 10.1142/S021812741250071X IF 1.501
12. Fractional Bloch equation with delay, S. Bhalekar, V. Daftardar-Gejji, D. Baleanu and R. Magin, Computers and Mathematics with Applications, 61(5) (2011) 1355-1365. https://doi.org/10.1016/j.camwa.2010.12.079 IF 1.860
2010
11. Fractional ordered Liu system with time-delay, S. Bhalekar and V. Daftardar-Gejji, Communications in Nonlinear Science and Numerical Simulations, 15(8) (2010) 2178-2191. DOI: 10.1016/j.cnsns.2009.08.015. IF: 3.181
10. Synchronization of different fractional order chaotic systems using active control, S. Bhalekar and V. Daftardar-Gejji, Communications in Nonlinear Science and Numerical Simulations, 15(11) (2010) 3536—3546. DOI:10.1016/j.cnsns.2009.12.016 IF: 3.181
9. Chaos in fractional order Liu system, V. Daftardar-Gejji and S. Bhalekar, Computers and Mathematics with Applications, 59(3) (2010) 1117-1127. DOI: 10.1016/j.camwa.2009.07.003. IF 1.860
8. Solving fractional boundary value problems with Dirichlet boundary
conditions, V. Daftardar-Gejji and S. Bhalekar, Computers and Mathematics with Applications, 59 (2010) 1801-1809. DOI: 10.1016/j.camwa.2009.08.018 IF 1.860
2009
7. Solving nonlinear functional equation using Banach contraction principle, V. Daftardar-Gejji and S. Bhalekar, Far East Journal of Applied Mathematics, 34(3), (2009), 303-314.
2008
6. Boundary Value Problems for Multi-term Fractional Differential Equations, V. Daftardar-Gejji and S. Bhalekar, Journal of Mathematical Analysis and Applications, 345 (2008) 754–765. DOI: 10.1016/j.jmaa.2008.04.065. IF 1.138
5. New Iterative Method: Application to Partial Differential Equations, S. Bhalekar and V. Daftardar-Gejji, Applied Mathematics and Computations, 203( 2), (2008), 778-783. DOI: 10.1016/j.amc.2008.05.071 IF 2.300
4. Solving evolution equations using a new iterative method, S. Bhalekar and V. Daftardar-Gejji, Numerical Methods for Partial Differential Equations, 26(4) (2010) 906-916. DOI 10.1002/num.20463. IF 1.305
3. An Iterative method for solving fractional differential equations, V. Daftardar-Gejji and S. Bhalekar, Proceedings in Applied Mathematics and Mechanics, 7(1), (2008), 2050017 – 2050018. DOI: 10.1002/pamm.200701001
2. Solving fractional diffusion-wave equations using a new iterative method, V. Daftardar-Gejji and S. Bhalekar, Fractional Calculus and Applied Analysis, 11 (2) (2008) 193--202. IF 2.865
1. Solving multi-term fractional linear and non-linear diffusion-wave equations by Adomian decomposition method, V. Daftardar-Gejji and S. Bhalekar, Applied Mathematics and Computations, 202 (2008) 113–120.
DOI: 10.1016/j.amc.2008.01.027 IF 2.300