2024
Devaraj, H., Sohail, S., Ooi, M.P-L., Li, B., Hudson, N., Baughman, M., Chard, K., Chard, R., Foster, I., Rana, O., (2024) RuralAI in Tomato Farming: Integrated Sensor System, Distributed Computing and Hierarchical Federated Learning for Crop Health Monitoring. IEEE Sensors Letters
Zichuan Xu, Lin Wang, Weifa Liang, Qiufen Xia, Wenzheng Xu, Pan Zhou, Omer F. Rana: Age-Aware Data Selection and Aggregator Placement for Timely Federated Continual Learning in Mobile Edge Computing. IEEE Transactions on Computers 73(2): 466-480 (2024)
Zichuan Xu, Haiyang Qiao, Weifa Liang, Zhou Xu, Qiufen Xia, Pan Zhou, Omer F. Rana, Wenzheng Xu:
Flow-Time Minimization for Timely Data Stream Processing in UAV-Aided Mobile Edge Computing. ACM Trans. Sens. Networks 20(3): 58:1-58:28 (2024)
Kaushal, Ashish, Almurshed, Osama, Almoghamis, Osama, Alabbas, Areej, Auluck, Nitin, Veeravalli, Bharadwaj and Rana, Omer, (2024). SHIELD: A secure heuristic integrated environment for load distribution in rural-AI. Future Generation Computer Systems: The International Journal of eScience 161 , pp. 286-301. 10.1016/j.future.2024.07.026
Mussa, Omar, Rana, Omer, Goossens, Benoit, Orozco Ter Wengel, Pablo and Perera, Charith, (2024). ForestQB: Enhancing linked data exploration through graphical and conversational UIs integration. ACM Journal on Computing and Sustainable Societies. DoI: 10.1145/3675759
Abu Awwad, Yaser, Rana, Omer and Perera, Charith, (2024). Anomaly detection on the edge using smart cameras under low-light conditions. Sensors 24 (3) , 772. 10.3390/s24030772
2023
Ooi, M.P-L., Sohail, S., Huang, V., Hudson, N., Baughman, M., Rana, O., Hinze, A., Chard, K., Chard, R., Foster, I., Spyridopoulos, T., Nagra, H. (2023) Measurement and applications: Exploring the Challenges and Opportunities of Hierarchical Federated Learning in Sensor Applications. IEEE Instrumentation & Measurement Magazine, 20(9), 21-31. 10.1109/MIM.2023.10328671
Huang, V., Sohail, S., Mayo, M., Botran, T.L., Rodrigues, M., Anderson, C., Ooi, M. (2023 July). Keep It Simple: Fault Tolerance Evaluation of Federated Learning with Unreliable Clients, in 2023 IEEE 16th International Conference on Cloud Computing (CLOUD) (pp. 1-3). IEEE
Gu, X., Sabrina, F., Fan, Z., & Sohail, S. (2023). A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. International Journal of Environmental Research and Public Health, 20(15), 6539. 10.3390/ijerph20156539
Abeysekera, S.K., Robinson, A., Ooi, M.P.L., Kuang, Y.C., Manley-Harris, M., Holmes, W., Hirst, E., Nowak, J., Caddie, M., Steinhorn, G. and Demidenko, S. (2023). Sparse reproducible machine learning for near infrared hyperspectral imaging: Estimating the tetrahydrocannabinolic acid concentration in Cannabis sativa L. Industrial Crops and Products, 192, 116137. 10.1016/j.indcrop.2022.116137
Kounev, S., Herbst, N., Abad, C.L., Iosup, A., Foster, I., Shenoy, P., Rana, O. and Chien, A.A., 2023. Serverless computing: What it is, and what it is not?. Communications of the ACM, 66(9), pp.80-92.
2022
Patros, P., Ooi, M., Huang, V., Mayo, M., Anderson, C., Burroughs, S., Baughman, M., Almurshed, O., Rana, O., Chard, R. and Chard, K. (2022). Rural ai: Serverless-powered federated learning for remote applications. IEEE Internet Computing, 27(2), 28-34. 10.1109/MIC.2022.3202764
Rana, O., Spyridopoulos, T., Hudson, N., Baughman, M., Chard, K., Foster, I., & Khan, A. (2022, December). Hierarchical and decentralised federated learning. In 2022 Cloud Continuum (pp. 1-9). IEEE.
Kotsehub, N., Baughman, M., Chard, R., Hudson, N., Patros, P., Rana, O., Foster, I. and Chard, K. (2022, October). Flox: Federated learning with faas at the edge. In 2022 IEEE 18th International Conference on e-Science (e-Science) (pp. 11-20). IEEE. 10.1109/eScience55777.2022.00016
Savitz, S., Perera, C., & Rana, O. (2022). Edge analytics on resource constrained devices. International Journal of Computational Science and Engineering.
Padmasiri, H., Shashirangana, J., Meedeniya, D., Rana, O., & Perera, C. (2022). Automated license plate recognition for resource-constrained environments. Sensors, 22(4), 1434.. 10.3390/s22041434, MDPI
Almurshed, O., Patros, P., Huang, V., Mayo, M., Ooi, M., Chard, R., Chard, K., Rana, O., Nagra, H., Baughman, M. and Foster, I. (2022 July) Adaptive Edge-Cloud Environments for Rural AI, in IEEE Int. Conf. on Services Computing (SCC), (pp. 74-83). IEEE
Sabrina, F., Sohail, S. et al.,"An Interpretable Artificial Intelligence based Smart Agriculture System", Computers, Materials & Continua, CMC, 2022
2021
Sabrina, F., Sohail, S., Thakur, S., Azad, S., & Wasimi, S. "Use of Deep Learning Approach on UAV Imagery to Detect Mistletoe Infestation". Proc. of IEEE Region 10 Symposium (TENSym). 2020. doi: 10.1109/TENSYMP50017.2020.9230971
Iakovidis, D.K., Ooi, M., Kuang, Y.C., Demidenko, S., Shestakov, A., Sinitsin, V., Henry, M., Sciacchitano, A., Discetti, S., Donati, S. and Norgia, M., (2021). Roadmap on signal processing for next generation measurement systems. Measurement Science and Technology, 33(1), p.012002.. 10.1088/1361-6501/ac2dbd
(August 2023 -- alongside EuroPar, Cyprus)
IEEE International Conference on Services Computing (SCC 2022) , Barcelona Spain
3:33:35 - 4:00:00 Agritech with Rua Bioscience