“Fifty Shades of Bias”: Normative Ratings of Gender Bias in GPT Generated English Text
Rishav Hada, Agrima Seth, Harshita Diddee, Kalika Bali
In Proceedings of EMNLP 2023. [PDF]
“Fifty Shades of Bias”: Normative Ratings of Gender Bias in GPT Generated English Text
Rishav Hada, Agrima Seth, Harshita Diddee, Kalika Bali
In Proceedings of EMNLP 2023. [PDF]
Language serves as a powerful tool for the manifestation of societal belief systems. In doing so, it also perpetuates the prevalent biases in our society. Gender bias is one of the most pervasive biases in our society and is seen in online and offline discourses. With LLMs increasingly gaining human-like fluency in text generation, gaining a nuanced understanding of the biases these systems can generate is imperative. Prior work often treats gender bias as a binary classification task. However, acknowledging that bias must be perceived at a relative scale; we investigate the generation and consequent receptivity of manual annotators to bias of varying degrees. Specifically, we create the first dataset of GPT-generated English text with normative ratings of gender bias. Ratings were obtained using Best–Worst Scaling – an efficient comparative annotation framework. Next, we systematically analyze the variation of themes of gender biases in the observed ranking and show that identity-attack is most closely related to gender bias. Finally, we show the performance of existing automated models trained on related concepts on our dataset.
MEGA: Multilingual Evaluation of Generative AI
Kabir Ahuja, Rishav Hada, Millicent Ochieng, Prachi Jain, Harshita Diddee, Samuel Maina, Tanuja Ganu, Sameer Segal, Maxamed Axmed, Kalika Bali, Sunayana Sitaram
On arXiv. [PDF]
Generative AI models have impressive performance on many Natural Language Processing tasks such as language understanding, reasoning and language generation. One of the most important questions that is being asked by the AI community today is about the capabilities and limits of these models, and it is clear that evaluating generative AI is very challenging. Most studies on generative Large Language Models (LLMs) are restricted to English and it is unclear how capable these models are at understanding and generating other languages. We present the first comprehensive benchmarking of generative LLMs - MEGA, which evaluates models on standard NLP benchmarks, covering 8 diverse tasks and 33 typologically diverse languages. We also compare the performance of generative LLMs to State of the Art (SOTA) non-autoregressive models on these tasks to determine how well generative models perform compared to the previous generation of LLMs. We present a thorough analysis of the performance of models across languages and discuss some of the reasons why generative LLMs are currently not optimal for all languages. We create a framework for evaluating generative LLMs in the multilingual setting and provide directions for future progress in the field.
Beyond Digital "Echo Chambers": The Role of Viewpoint Diversity in Political Discussion
Rishav Hada, Amir Ebrahimi Fard, Sarah Shugars, Federico Bianchi, Patricia Rossini, Dirk Hovy, Rebekah Tromble, Nava Tintarev
In Proceedings of WSDM 2023. [PDF] [Slides] [Talk] [Dataset & Code]
Increasingly taking place in online spaces, modern political conversations are typically perceived to be unproductively affirming -- siloed in so called "echo chambers" of exclusively like-minded discussants. Yet, to date we lack sufficient means to measure viewpoint diversity in conversations. To this end, in this paper, we operationalize two viewpoint metrics proposed for recommender systems and adapt them to the context of social media conversations. This is the first study to apply these two metrics (Representation and Fragmentation) to real world data and to consider the implications for online conversations specifically. We apply these measures to two topics -- daylight savings time (DST), which serves as a control, and the more politically polarized topic of immigration. We find that the diversity scores for both Fragmentation and Representation are lower for immigration than for DST. Further, we find that while pro-immigrant views receive consistent pushback on the platform, anti-immigrant views largely operate within echo chambers. We observe less severe yet similar patterns for DST. Taken together, Representation and Fragmentation paint a meaningful and important new picture of viewpoint diversity.
Ruddit: Norms of offensiveness for English Reddit comments
Rishav Hada, Sohi Sudhir, Pushkar Mishra, Helen Yannakoudakis, Saif M Mohammad, Ekaterina Shutova
In Proceedings of ACL 2021. [PDF] [Slides] [Talk] [Dataset & Code]
On social media platforms, hateful and offensive language negatively impact the mental well-being of users and the participation of people from diverse backgrounds. Automatic methods to detect offensive language have largely relied on datasets with categorical labels. However, comments can vary in their degree of offensiveness. We create the first dataset of English language Reddit comments that has fine-grained, real-valued scores between -1 (maximally supportive) and 1 (maximally offensive). The dataset was annotated using Best--Worst Scaling, a form of comparative annotation that has been shown to alleviate known biases of using rating scales. We show that the method produces highly reliable offensiveness scores. Finally, we evaluate the ability of widely-used neural models to predict offensiveness scores on this new dataset.