3月30日(月)
10:00-11:00 佐々木真二
パンルヴェ方程式の完全 WKB 解析の解析的基礎付けについて
11:30-12:30 竹村剛一
qパンルヴェ方程式の対称性再訪
14:00-15:00 岩木耕平
TBA
15:30-16:30 齋藤政彦
Apparent singularities and canonical coordinates of moduli spaces of parabolic Higgs bundles and connections on curves
3月31日(火)
10:00-11:00 宿田彩斗
The accessory parameters of confluent Heun’s equations and irregular conformal blocks
11:30-12:30 石橋典
Cluster algebra associated with a W-colored marked surface
14:00-15:00 Martin Guest
The four real forms of the Tzitzeica/Bullough-Dodd equation: geometry versus analysis
15:30-16:30 松原=許 宰榮
Periods of limiting mixed Hodge structures of projective hypersurfaces
佐々木真二
Title: パンルヴェ方程式の完全WKB解析の解析的基礎付けについて
パンルヴェ方程式の完全WKB解析において、90年代に河合らによって構成された形式解や形式的変換論がある。その解析的意味付けについて説明する。また、それらを用いて、接続問題について可能な限り議論する。
竹村剛一
Title: qパンルヴェ方程式の対称性再訪
qパンルヴェ方程式について、付随するq線形差分方程式やワイル群対称性の観点などから捉え直す。qミドルコンボルーションとの関係についても述べたい。
岩木耕平
Title: TBA
TBA
齋藤政彦
Title: Apparent singularities and canonical coordinates of moduli spaces of parabolic Higgs bundles and connections on curves
非特異射影曲線上の放物Higgs束や放物接続のモジュライ空間は、古典的なパンルべ方程式を含む可積分系の初期値空間として重要な研究対象である。このモジュライ空間は代数多様体であり適当なパラメータを固定したときに、自然な代数的シンプレクテック構造を持つ。この講演では、モジュライ空間の標準座標(ダルブー座標)を与える見かけの特異点理論について説明する。また、パンルべ方程式を含むモノドロミー保存変形の微分方程式について考察する。この講演の内容の一部は光明新氏、Frank Loray氏, Szilard Szabo氏との共著論文「arXiv:2309.05012」による。
宿田彩斗
Title: The accessory parameters of confluent Heun's equations and irregular conformal blocks
It is conjectured that a relationship exists between the accessory parameters of (confluent) Heun's equation and the classical limit of conformal blocks.
In this talk, we propose a method to obtain a formal power series expansion of the accessory parameter with respect to the time variable by considering deformations of the Heun equation that preserve a certain Voros period.
We will then provide a computational verification of the agreement between the accessory parameter and the classical conformal block for the first several orders, illustrated with several examples which may have irregular singularities.
This talk is based on ongoing joint work with Kohei Iwaki (University of Tokyo) and Hajime Nagoya (Kanazawa University).
石橋典
Title: Cluster algebra associated with a W-colored marked surface
We introduce a moduli space of decorated twisted G-local systems over a marked surface with prescribed boundary condition by the Weyl group (or braid group) elements, and investigate its cluster structure. The corresponding quivers are related by a kind of “degeneration” when the Weyl group elements are related in the Bruhat order. This talk is based on a joint work with Linhui Shen.
Martin Guest
Title: The four real forms of the Tzitzeica/Bullough-Dodd equation: geometry versus analysis
There are four real forms of the Tzitzeica (or Bullough-Dodd) equation. They are distinguished from each other by their geometrical interpretations, as well as by their analytic properties. We focus on the special case of radial solutions, which can be regarded as real solutions of a version of the Painleve III equation, and hence correspond to monodromy data of a linear isomonodromic system. We discuss the interplay between the geometrical properties of this monodromy data and the analytic properties of solutions .
松原=許 宰榮
Title: Periods of limiting mixed Hodge structures of projective hypersurfaces
It is widely believed that a period integral is connected to special values of L-functions and there are a number of conjectures by Beilinson, Deligne and others. Motivated by this philosophy, we study an arithmetic nature of the asymptotic expansion of a period integral. It is an active playground where arithmetics goes along well with special functions. The theorem we propose is the following: for a generic one-parameter degeneration of projective hypersurfaces defined over a subfield K of the field of complex numbers, the periods of the limiting mixed Hodge structure are generated by certain special values of log, Gamma and Dirichlet L-functions over a cyclic extension of K. The genericity condition of a one-parameter degeneration is defined in terms of the secondary fan. Our proof strategy is in two steps. First, we show that ANY generic one-parameter degeneration is reduced to a SINGLE one-parameter degeneration, which we call the Fermat deformation. Second, we perform an analytic continuation of solutions of a period integral by expanding it as a linear combination of solutions to a GKZ system. This is a joint project with Masanori Asakura (Hokkaido University).
この研究集会は以下の援助を受けています
科学研究費補助金 若手研究 25K17237 (研究代表者:伊藤要平)
科学研究費補助金 基盤研究(A)22H00094 (研究代表者:齋藤政彦,研究分担者:稲場道明)
科学研究費補助金 基盤研究(C)25K07043 (研究代表者:廣惠一希)
科学研究費補助金 基盤研究(C)24K06695 (研究代表者:山川大亮)