• F. Bei, R. Piovani, L2 Frölicher inequalities, 2025, arXiv:2507.19385. arXiv
• R. Piovani, On the cohomology of the Bigolin complex, 2025, arXiv:2405.20823. arXiv
• T. Holt, R. Piovani, Left-invariant almost complex structures on the higher dimensional Kodaira-Thurston manifold, Ann. Global Anal. Geom. 66 (2024), no. 1, 2, 19 pp. arXiv DOI
• T. Holt, R. Piovani, The L2 Aeppli-Bott-Chern Hilbert complex, J. Funct. Anal. 287 (2024), 110596, 59 pp. arXiv DOI
• T. Holt, R. Piovani, A. Tomassini, Invariants of almost complex and almost Kähler manifolds, Internat. J. Math. (2024), 2442005, 34 pp. arXiv DOI
• T. Holt, R. Piovani, Primitive decomposition of Bott-Chern and Dolbeault harmonic (k, k)-forms on compact almost Kähler manifolds, Eur. J. Math. 9 (2023), 73. arXiv DOI
• R. Piovani, Harmonic (1, 1)-forms on compact almost Hermitian 4-manifolds, Rivista di Matematica della Università di Parma 13 (2022), 671-692. rmup
• R. Piovani, Dolbeault Harmonic (1, 1)-forms on 4-dimensional compact quotients of Lie Groups with a left invariant almost Hermitian structure, J. Geom. Phys. 180 (2022), 104639. arXiv DOI
• R. Piovani, A. Tomassini, On the dimension of Dolbeault harmonic (1, 1)-forms on almost Hermitian 4-manifolds, Pure Appl. Math. Q. 18 (2022), 3, 1187 – 1201. arXiv DOI
• R. Piovani, N. Tardini, Bott-Chern harmonic forms and primitive decompositions on compact almost Kähler manifolds, Ann. Mat. Pura Appl. 202 (2023), 2749-2765. arXiv DOI
• R. Piovani, A. Tomassini, Bott-Chern Laplacian on almost Hermitian manifolds, Math. Z. 301 (2022), 2685–2707. arXiv DOI
• R. Piovani, W1,2 Bott-Chern and Dolbeault decompositions on Kähler manifolds, J. Geom. Anal. 33 (2023), n. 281. arXiv DOI
• R. Piovani, T. Sferruzza, Deformations of Strong Kähler with torsion metrics, Complex Manifolds 8 (2021), no. 1, 286-301. arXiv DOI
• R. Piovani, A. Tomassini, Aeppli cohomology and Gauduchon metrics, Complex Anal. Oper. Theory 14 (2020), no. 1, Art. 22, 15 pp. arXiv DOI
• R. Piovani, A. Tomassini, Bott-Chern harmonic forms on complete Hermitian manifolds, Internat. J. Math. 30 (2019), no. 5, 1950028, 17 pp. researchgate DOI
• R. Piovani, A. Tomassini, Bott-Chern harmonic forms on Stein manifolds, Proc. Amer. Math. Soc. 147 (2019), no. 4, 1551–1564. arXiv DOI
PhD Thesis: R. Piovani, Differential operators on complex manifolds, PhD Thesis, University of Pisa, 2021, Google Drive.