The LKPY Package for Recommender Systems Experiments [PDF]
Michael D Ekstrand (Boise State University)*
Offline Comparison of Ranking Functions using Randomized Data [PDF]
Aman Agarwal (Google); Xuanhui Wang (Google); Cheng Li (Google)*; Michael Bendersky (Google); Marc Najork (Google)
Multi-Armed Bandits for Recommender Systems : A True Story of Accuracy [PDF]
Nicolas Gutowski (Université d'Angers / Groupe ESEO)*; Tassadit Amghar (Université d'Angers); Olivier Camp (Groupe ESEO); Fabien Chhel (Groupe ESEO)
Using offline metrics and user behavior analysis to combine multiple systems for music recommendation [PDF]
Andres Ferraro (Music Technology Group - Universitat Pompeu Fabra)*; Dmitry Bogdanov (Universitat Pompeu Fabra); Kyumin Choi (Kakao Corp); Xavier Serra (Universitat Pompeu Fabra )
Sequeval: A Framework to Assess and Benchmark Sequence-based Recommender Systems [PDF]
Diego Monti (Politecnico di Torino)*; Enrico Palumbo (Istituto Superiore Mario Boella); Giuseppe Rizzo (ISMB); Maurizio Morisio (Politecnico di Torino)
A Distributed and Accountable Approach to Offline Recommender Systems Evaluation [PDF]
Diego Monti (Politecnico di Torino)*; Giuseppe Rizzo (ISMB); Maurizio Morisio (Politecnico di Torino)
Off-line vs. On-line Evaluation of Recommender Systems in Small E-commerce [PDF]
Ladislav Peška (Charles University, Prague)*; Peter Vojtas (Charles University, Prague)
Towards an Offline Evaluation Strategy for Recommender Systems in Personalized Music Video Television [PDF]
Reza Aditya Permadi (TU Delft)*; Martha Larson (Radboud University); Bouke Huurnink (XITE Networks International)
Characterization of Fair Experiments for Recommender System Evaluation – A Formal Analysis [PDF]
Pablo Castells (Universidad Autónoma de Madrid)*; Rocío Cañamares (Universidad Autónoma de Madrid)
Fair Offline Evaluation Methodologies for Implicit-Feedback Recommender Systems with MNAR Data [PDF]
Olivier Jeunen (University of Antwerp)*; Koen Verstrepen (Froomle); Bart Goethals (Universiteit Antwerpen)
Comparing offline and online evaluation results of recommender systems [PDF]
Tomas Rehorek, Ondrej Biza*, Radek Bartyzal*, Pavel Kordik*, Ivan Povalyev, Ondrej Podstavek (Czech Technical University in Prague, Recombee)
On the Design of Estimators for Off-Policy Evaluation [PDF]
Nikos Vlassis (Netflix)*; Aurelien Bibaut (UC Berkeley); Tony Jebara (Netflix)
From User Experience to Offline Metrics and Back Again: A Research Agenda [PDF]
Joseph Konstan (University of Minnesota)*
A More Comprehensive Offline Evaluation of Active Learning in Recommender Systems [PDF]
Diego Carraro (Insight Centre for Data Analytics)*; Derek Bridge (Insight Centre for Data Analytics)
RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising [PDF]
D. Rohde (Criteo), S. Bonner (Criteo), T. Dunlop (Criteo), F. Vasile (Criteo), A. Karatzoglou (Telefonica Research)
Monte Carlo Estimates of Evaluation Metric Error and Bias [PDF]
Mucun Tian (Boise State University); Michael D Ekstrand (Boise State University)*
On measuring polarization using recommender system scores [PDF]
Robert Keyes (Shopify Inc.); Trish Gillett (Shopify Inc.); Putra Manggala (Shopify Inc.)*
CounterFactual Regression with Importance Sampling Weights [PDF]
Negar Hassanpour (University of Alberta)*; Russell Greiner (U Alberta)
BEARS: Towards an Evaluation Framework for Bandit-based Interactive Recommender Systems [PDF]
Andrea P Barraza (Insight Centre for Data Analytics)*