Liu*, Z., Roy*, M., DeYonker, N. J., and Gopalakrishnan, R., Neutral gas pressure dependence of ion–ion mutual neutralization rate constants using Landau–Zener theory coupled with trajectory simulations. Journal of Chemical Physics 159 (2023) 114111.
https://doi.org/10.1063/5.0168609
Madugula*, V., Suresh*, V., Liu, Z., Ballard, D., Wymore, L., and Gopalakrishnan, R., Self-consistent calculations of the electric charge, ion drag force, and the drift velocity of spherical grains using Langevin Dynamics and comparisons against canonical experiments. Accepted for publication in Physics of Plasmas.
Beckers, J. et al. Physics and applications of dusty plasmas: The perspectives 2023. Accepted for publication in Physics of Plasmas.
Suresh*, V., Liu*, Z., Perry*, Z. and Gopalakrishnan, R., Modeling Particle-Particle Binary Coagulation Rate Constants for Spherical Aerosol Particles at High Volume Fractions Using Langevin Dynamics Simulations. Journal of Aerosol Science 164: 106001.
https://doi.org/10.1016/j.jaerosci.2022.106001
Selected by the Editor-in-Chief of J. Aerosol Sci. to feature as the cover page of Volume 164 August 2022 issue.
1. Suresh#, V., Li#, L., Redmond Go Felipe, J. and Gopalakrishnan, R., Modeling nanoparticle charge distribution in the afterglow of non-thermal plasmas and comparison with measurements Journal of Physics D: Applied Physics 54, 275205 (2021). (# equal contribution)
https://doi.org/10.1088/1361-6463/abf70c
2. Li, L. and Gopalakrishnan, R. (2021), An experimentally validated model of diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science 151: 105678.
https://doi.org/10.1016/j.jaerosci.2020.105678
3. Suresh, V. and Gopalakrishnan, R. (invited article), Tutorial: Langevin Dynamics methods for aerosol particle trajectory simulations and collision rate constant modeling. Journal of Aerosol Science 155: 105476.
1. Li*, L., Chahl*, H. S. and Gopalakrishnan, R. (2020), Comparison of the predictions of Langevin Dynamics-based diffusion charging collision kernel models with canonical experiments, J. Aerosol. Sci. 140, 105481.
https://doi.org/10.1016/j.jaerosci.2019.105481
2. Ahmed*, R., Suresh*, V., Li*. L. and Gopalakrishnan, R. (2020), Scalable generation of high concentration aerosol in the size range of 0.1–10 μm from commercial powders using ultrasonic dispersion, Powder Technology 376, 52.
1. Ahmed*, R., & Gopalakrishnan, R. (2019), Computational study of electrostatic focusing of aerosol nanoparticles using an Einzel lens, Journal of Aerosol Science, 105443 (2019).
https://doi.org/10.1016/j.jaerosci.2019.105443
2. Chng*, E. J., Watson, A. B., Suresh*, V., Fujiwara, T., Bumgardner, J. D., & Gopalakrishnan, R. (2019), Adhesion of electrosprayed chitosan coatings using silane surface chemistry, Thin Solid Films, 137454.
https://doi.org/10.1016/j.tsf.2019.137454
3. Chahl*, H. S. and Gopalakrishnan, R., (2019) High potential, near free molecular regime Coulombic collisions in aerosols and dusty plasmas, Aerosol Science and Technology, 53(8): 933-957.
https://doi.org/10.1080/02786826.2019.1614522
4. Pokharel*, L., Parajuli*, P., Li*, L., Chng*, E. J., and Gopalakrishnan, R., (2019) An ultrasonic feeding mechanism for continuous aerosol generation from cohesive powders. Aerosol Science and Technology, 53(3): 321-331.
https://doi.org/10.1080/02786826.2018.1559920
5. Wong, C.-S., Gopalakrishnan, R., and Goree, J. A., (2019) Fluctuation-theorem method of measuring a particle's mass without knowing its shape or density, Journal of Aerosol Science, 129: 116-123.
Wong, C.-S., Goree, J. A., & Gopalakrishnan, R., (2018) Experimental demonstration that a free-falling aerosol particle obeys a fluctuation theorem, Physical Review E (Rapid Communication), 97: 050601(R).
1. Gopalakrishnan, R., Kawamura, E., Lichtenberg, A. J., Lieberman, M. A., & Graves, D. B., (2016) Solvated electrons at the atmospheric pressure plasma-water anodic interface J. Phys. D: Appl. Phys., 49: 295205.
https://doi.org/10.1088/0022-3727/49/29/295205
Selected by the Editorial Board of J. Phys. D: Appl. Phys. to feature in Highlights of 2016.
2. Gopalakrishnan, R., McMurry, P. H., & Hogan, C. J., (2015). The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles. Aerosol Science and Technology, 49(12): 1181-1194.
https://doi.org/10.1080/02786826.2015.1109053
3. Gopalakrishnan, R., McMurry, P. H., & Hogan, C. J. (2015), The electrical mobilities and scalar friction factors of modest-to-high aspect ratio particles in the transition regime. Journal of Aerosol Science, 82: 24-39.
https://doi.org/10.1016/j.jaerosci.2015.01.001
4. Gopalakrishnan, R., Thajudeen, T., Ouyang, H. & Hogan, C. J. (2013), The unipolar diffusion charging of arbitrary shaped aerosol particles. Journal of Aerosol Science, 64: 60-80.
https://doi.org/10.1016/j.jaerosci.2013.06.002
5. Gopalakrishnan, R., Meredith, M. J., Larriba, C. & Hogan, C. J. (2013), Brownian dynamics determination of the bipolar steady charge distribution on sphere and non-spheres in the transition regime. Journal of Aerosol Science, 63: 126-145.
https://doi.org/10.1016/j.jaerosci.2013.04.007
6. Thajudeen, T., Gopalakrishnan, R. & Hogan, C. J. (2012), The collision rate of non-spherical particles and aggregates for all diffusive Knudsen numbers. Aerosol Science and Technology, 46(11): 1174-1186.
https://doi.org/10.1080/02786826.2012.701353
7. Ouyang, H., Gopalakrishnan, R. & Hogan, C. J. (2012), Nanoparticle collisions and growth in the gas phase in the presence of singular attractive potentials. Journal of Chemical Physics, 137: 064316.
https://doi.org/10.1063/1.4742064
8. Gopalakrishnan, R., & Hogan, C. J. (2012), Coulomb-influenced collisions in aerosols and dusty plasmas. Phys. Rev. E, 85: 026410.
https://doi.org/10.1103/PhysRevE.85.026410
9. Gopalakrishnan, R., Thajudeen, T. & Hogan, C. J. (2011), Collision limited reaction rates for arbitrarily shaped particles across the entire diffusive Knudsen number range. Journal of Chemical Physics, 135: 054302.
https://doi.org/10.1063/1.3617251
10. Gopalakrishnan, R., & Hogan, C. J. (2011), Determination of the transition regime collision kernel from mean first passage times. Aerosol Science and Technology, 45: 1499-1509.
Ranganathan Gopalakrishnan, Lekhnath Pokharel, Rayhan Ahmed, Ewe Jiun Chng, Jason Scott Presley, “SYSTEMS AND METHODS FOR DISPERSION OF DRY POWDERS”, US Patent Number 11,358,112. https://patents.google.com/patent/US11358112B2/en