Selected Publications
Journals
Wenrui Yu*, Qiongxiu Li*, Milan Lopuhaä-Zwakenberg, Mads Græsbøll Christensen, Richard Heusdens."Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization" , IEEE. Trans. on Information Forensics and Security, 2024, [Link]
Xiao Li, Qiongxiu Li, Zhanhao Hu, and Xiaolin Hu. " On the Privacy Effect of Data Enhancement via the Lens of Memorization", IEEE. Trans. on Information Forensics and Security, 2023, [Link]
Qiongxiu Li, Jaron Skovsted Gundersen, Milan Lopuhaa-Zwakenberg, and Richard Heusdens. "Adaptive Differentially Quantized Subspace Perturbation (ADQSP): A Unified Framework for Privacy-Preserving Distributed Average Consensus." IEEE. Trans. on Information Forensics and Security, 2023, [Link]
Qiongxiu Li, Richard Heusdens, and Mads Græsbøll Christensen. "Communication Efficient Privacy-Preserving Distributed Optimization using Adaptive Differential Quantization." Signal Processing, 2022, [link]
Qiongxiu Li, Jaron Skovsted Gundersen, Richard Heusdens, and Mads Græsbøll Christensen. "Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms." IEEE. Trans. on Information Forensics and Security, 2021, [Link]
Qiongxiu Li, Richard Heusdens, and Mads Græsbøll Christensen. "Privacy-Preserving Distributed optimization via Subspace Perturbation: A General Framework." IEEE. Trans. on Signal Processing, 2020, [link]
Conferences
Wenrui Yu, Richard Heusdens, Jun Pang, Qiongxiu Li, Privacy-Preserving Distributed Maximum Consensus Without Accuracy Loss, ICASSP, 2025
Changlong Ji, Stephane Maag, Richard Heusdens, Qiongxiu Li, Re-Evaluating Privacy in Centralized and Decentralized Learning: An Information-Theoretical and Empirical Study, ICASSP, 2025
Qiongxiu Li, Milan Lopuhaä-Zwakenberg, Wenrui Yu, Richard Heusdens. "On the Privacy Bound of Distributed Optimization and its Application in Federated Learning", EUSIPCO 2024
Qiongxiu Li, Wenrui Yu, Changlong Ji, and Richard Heusdens. "Topology-dependent Privacy Bound for Decentralized Federated Learning", ICASSP, 2024
Qiongxiu Li, and Lixia Luo. "On the Privacy of Federated Clustering: A Cryptographic View", ICASSP, 2024
Sebastian O. Jordan, Qiongxiu Li, and Richard Heusdens. “Privacy-Preserving Distributed Optimisation Using Stochastic PDMM”, ICASSP, 2024
Qiongxiu Li, Jaron Skovsted Gundersen, Katrine Tjell, Rafal Wisniewski, and Mads Græsbøll Christensen. "Privacy-Preserving Distributed Expectation Maximization for Gaussian Mixture model using subspace perturbation", ICASSP, 2022.
Qiongxiu Li, Milan Lopuhaa-Zwakenberg, Richard Heusdens, and Mads Græsbøll Christensen."Two for the price of one: communication efficient and privacy-preserving distributed average consensus using quantization", EUSIPCO, 2022.
Qiongxiu Li, Richard Heusdens, and Mads Græsbøll Christensen. "Privacy-Preserving Distributed Least Squares via Subspace Perturbation." EUSIPCO, 2020.
Qiongxiu Li, Mario Coutino, Geert Leus and Mads Græsbøll Christensen. "Privacy-Preserving Distributed Graph Filtering." EUSIPCO, 2020.
Qiongxiu Li, Richard Heusdens, and Mads Græsbøll Christensen. "Covex Optimisation-based Privacy-Preserving Distributed Average Consensus in Wireless Sensor Networks." ICASSP, 2020.
Qiongxiu Li, Ignacio Cascudo, and Mads Græsbøll Christensen. "Privacy-Preserving Distributed Average Consensus based on Additive Secret Sharing." EUSIPCO, 2019.
Qiongxiu Li, and Mads Græsbøll Christensen. "A Privacy-Preserving Asynchronous Averaging Algorithm based on Shamir’s Secret Sharing." EUSIPCO, 2019.