Journal and Conference Publications

2024

    1.  Characterizing nonclassical correlation via local channels

R. Muthuganesan and S. Balakrishnan

Physica Scripta 99, 095104  (2024)

iopscience.iop.org/article/10.1088/1402-4896/ad65c7/meta   

    2.  Open access publishing and quantum game theory under modified EWL scheme

Himanshu Miriyala and S. Balakrishnan

Physica A 647, 129922 (2024)

www.sciencedirect.com/science/article/abs/pii/S037843712400431X 

    3.  Construction of two-qubit gates using sqrt B Gate

M Karthick Selvan and S. Balakrishnan

Physica Scripta 99, 035113 (2024)

iopscience.iop.org/article/10.1088/1402-4896/ad23b6 


    4Two-qubit entangling operators as chaos control in a discrete dynamic Cournot duopoly game 

A. V. S. Kameshwari and S. Balakrishnan

Physical Review E 109, 014207 (2024)

link.aps.org/doi/10.1103/PhysRevE.109.014207 

2023

    1.  Qiskit Simulation of CNOT Equivalent Circuits 

Soumya Vishwakarma, Jerelyn P. Premjit, S. Balakrishnan and R Manoov 

2023 International Conference on Quantum Technologies, Communications, Computing, Hardware and Embedded Systems Security (iQ-CCHESS), KOTTAYAM, India, 2023, pp. 1-6 

ieeexplore.ieee.org/document/10391294     

    2.  Significance of Controller Independent Bell state-based communication protocol 

Charles Sunny  and S. Balakrishnan

International Journal of Theoretical Physics  62 (10), 229 (2023) 

link.springer.com/article/10.1007/s10773-023-05486-7 

    3.  Significance of Bell States Over Four-Qubit Entangled States in Quantum Bidirectional Direct Communication Protocols

Meera Ramachandran and S. Balakrishnan

International Journal of Theoretical Physics  62 (8), 180 (2023) 

link.springer.com/article/10.1007/s10773-023-05438-1 

    4.  Mirror symmetry in the geometry of nonlocal two-qubit gates and universal two-qubit quantum circuits

Karthick Selvan and S. Balakrishnan

European Physical Journal D 77 (7): 144 (2023) 

epjd.epj.org/articles/epjd/abs/2023/07/10053_2023_Article_717/10053_2023_Article_717.html  

5.  Correspondence between quantum communication protocol and quantum game theory

Meera Ramachandran and S. Balakrishnan

International Journal of Quantum Information 21 (8), 2350031 (2023) 

www.worldscientific.com/doi/10.1142/S0219749923500314 

6.  Interplay of noise, memory and entangling operator in quantum Stackelberg-Bertrand duopoly games

A. V. S. Kameshwari and S. Balakrishnan

Physica Scripta 98 (5), 055102 (2023)

iopscience.iop.org/article/10.1088/1402-4896/acc98e 

     7.  Concatenated deleting machines and their characteristics

A. Nancy and S. Balakrishnan

Communications in Theoretical Physics 75 (3), 035104 (2023)

iopscience.iop.org/article/10.1088/1572-9494/acb3b4 

8Effect of Noise in the Quantum Network Implementation of Cop and Robber Game 

Anjali Dhiman and S. Balakrishnan 

Mathematics and Computing. ICMC 2022. Springer Proceedings in Mathematics & Statistics, vol 415. Springer, Singapore. 

link.springer.com/chapter/10.1007/978-981-19-9307-7_2 

9Study of Decoherence in Quantum Cournot Duopoly Game Using Modified EWL Scheme

A. V. S. Kameshwari  and S. Balakrishnan 

Mathematics and Computing. ICMC 2022. Springer Proceedings in Mathematics & Statistics, vol 415. Springer, Singapore. 

link.springer.com/chapter/10.1007/978-981-19-9307-7_3 

2022

1.  Affinity-based geometric discord and quantum speed limits of its creation and decay

R. Muthuganesan and S. Balakrishnan

Physica Scripta 97, 124003 (2022)

iopscience.iop.org/article/10.1088/1402-4896/aca1ec  

2Concatenation of deleting machines

A. Nancy and S. Balakrishnan 

European Physical Journal Plus 137, 1156 (2022)

link.springer.com/article/10.1140/epjp/s13360-022-03366-3 

3.  Characterizing nonbilocal correlation: a geometric perspective

R. Muthuganesan,  S. Balakrishnan and V. K. Chandrasekar 

Quantum Information Processing  21, 216 (2022)

link.springer.com/article/10.1007/s11128-022-03561-2 

4.  Noisy quantum Stackelberg-Bertrand duopoly game

A. V. S. Kameshwari  and S. Balakrishnan 

European Physical Journal Plus 137, 764 (2022)

link.springer.com/article/10.1140/epjp/s13360-022-02958-3

5.  Two-Qubit Operators in No-Splitting Theorems

B. Shravan Kumar  and S. Balakrishnan 

Foundations of Physics 52, 60 (2022)

link.springer.com/article/10.1007/s10701-022-00577-7 

6.  Noise controlling entangling operators in the quantum network implementation of cop and robber game 

Anjali Dhiman and S. Balakrishnan 

Quantum Information Processing 21, 188 (2022)

link.springer.com/article/10.1007/s11128-022-03529-2 

 

7.  Effect of Noise in the Quantum Bidirectional Direct Communication Protocol Using Non-maximally Entangled States

Meera Ramachandran and S. Balakrishnan

International Journal of Theoretical Physics 61, 127 (2022)

link.springer.com/article/10.1007/s10773-022-05115-9 

 

8.  (In)significance of entangling operators in the noisy duopoly games

A. V. S. Kameshwari and S. Balakrishnan

Quantum Information Processing 21, 168 (2022)

link.springer.com/article/10.1007/s11128-022-03509-6 

 

9.  Study of potential games using Ising interaction

U Tejasvi, RD Eithiraj and S. Balakrishnan

International Journal of Quantum Information 20(1): 2150034 (2022)

www.worldscientific.com/doi/abs/10.1142/S0219749921500349 

2021

 

1.  Non-local characteristics of deleting machine

A. Nancy and S. Balakrishnan

European Physical Journal Plus 136, 1211 (2021)

link.springer.com/article/10.1140/epjp/s13360-021-02221-1 

 

2.  Cournot and Stackelberg duopoly games in the purview of modified EWL scheme 

A. V. S. Kameshwari and S. Balakrishnan

Quantum Information Processing 20, 337 (2021)

link.springer.com/article/10.1007/s11128-021-03281-z 

 

3.  Study of decoherence and memory in modified Eisert–Wilkens–Lewenstein scheme

A. V. S. Kameshwari and S. Balakrishnan

Quantum Information Processing 20, 282 (2021)

link.springer.com/article/10.1007/s11128-021-03216-8 

 

4.  Quasi-Deterministic Secure Quantum Communication Using Non-maximally Entangled States

Sujan Vijayaraj, S. Balakrishnan, K. Senthilnathan

International Journal of Theoretical Physics 60, 164–171 (2021)

link.springer.com/article/10.1007/s10773-020-04672-1 

2020

 

1. Significance of entangling operators in the purview of modified EWL scheme

V. Vijayakrishnan and S. Balakrishnan 

Quantum Information Processing  19(9), 1 (2020)

link.springer.com/article/10.1007/s11128-020-02827-x 

 

2. Equivalence between entanglement of channel and measurement in quantum teleportation

S Govind, S Balakrishnan 

International Journal of Quantum Information 18 (5)  2050023  (2020)

www.worldscientific.com/doi/abs/10.1142/S0219749920500239 

 

3. Controller-independent quantum bidirectional communication using non-maximally entangled states

Akaash Srikanth, S Balakrishnan 

Quantum Information Processing 19(4),1 (2020)

link.springer.com/article/10.1007/s11128-020-02628-2 

 

4.  Implementation of sequential game on quantum circuits

Anjali Dhiman, Tejasvi Uttam, S Balakrishnan 

Quantum Information Processing  19(4), 109  (2020)

link.springer.com/article/10.1007/s11128-020-2607-9 

2019


1.  Significance of Entangling Operators in Quantum Two Penny Flip Game

S. Sankrith, B Dave & S. Balakrishnan

Brazilian Journal of Physics 49, 859–863 (2019)

link.springer.com/article/10.1007/s13538-019-00698-x 

 

2.  Role of two-qubit entangling operators in the modified Eisert–Wilkens–Lewenstein approach of quantization

V. Vijayakrishnan and S. Balakrishnan

Quantum Information Processing 18, 112 (2019)

link.springer.com/article/10.1007/s11128-019-2232-7 

2018

 

1.  Correspondence between quantization schemes for two-player nonzero-sum games and CNOT complexity

V. Vijayakrishnan and S. Balakrishnan

Quantum Information Processing 17, 102 (2018)

link.springer.com/article/10.1007/s11128-018-1870-5 

2017


1.  Entanglement of spin qubits involving pure DM interaction

Ankita Sahu, Rupesh Singh and S. Balakrishnan

IOP Conference Series: Materials Science and Engineering. Vol. 263. No. 2. IOP Publishing, (2017)

iopscience.iop.org/article/10.1088/1757-899X/263/2/022001/meta 

 

2.  Controller-independent bidirectional quantum direct communication

Amit Kumar Mohapatra and S. Balakrishnan

Quantum Information Processing 16, 147 (2017)

link.springer.com/article/10.1007/s11128-017-1598-7 

 

3.  Realization of SWAPα Gates Using Pure DM interaction

S. Balakrishnan, R. Muthuganesan, and R. Sankaranarayanan

OSA Technical Digest (online) ISBN: 978-1-943580-26-2 (2017)

opg.optica.org/abstract.cfm?uri=QIM-2017-QT6A.26 

2016


1.  On the number of entangled qubits in quantum wireless sensor networks

Amit Kumar Mohapatra and S. Balakrishnan

International Journal of Quantum Information 14: 1650025 (2016)

www.worldscientific.com/doi/abs/10.1142/S0219749916500258 

2015


1.  Study on isotropic Heisenberg interaction for the realization of SWAP ±α gates

R. Muthuganesan, S. Balakrishnan, and R. Sankaranarayanan

AIP Conference Proceedings 1665, 130050 (2015)

aip.scitation.org/doi/abs/10.1063/1.4918198 

2014


1.  Chaining property for two-qubit operator entanglement measures

S. Balakrishnan and M. Lakshmanan

European Physics Journal Plus 129, 231 (2014)

link.springer.com/article/10.1140/epjp/i2014-14231-y 

 

2.  Various constructions of qubit SWAP gate

S. Balakrishnan

Physics Research International 479320 (2014)

www.hindawi.com/journals/physri/2014/479320/ 

 

3.  Linear entropy of two-qubit gates and majorization

S. Balakrishnan

International Journal of Quantum Information 12, 1450029 (2014)

www.worldscientific.com/doi/10.1142/S0219749914500294 

 

4.  Influence of initial conditions in 2x2 symmetric games

S. Balakrishnan

Quantum Information Processing 13, 2645 (2014)

link.springer.com/article/10.1007/s11128-014-0820-0 

 

5.  Equivalence of qubit gate operations

S. Balakrishnan

International Journal of Scientific & Engineering Research 92, 5(3) (2014)

2013


1.  Classical rules and quantum strategies in penny flip game

S. Balakrishnan and R. Sankaranarayanan

Quantum Information Processing 12, 1261 (2013)

link.springer.com/article/10.1007/s11128-012-0464-x 

2011


1.  Schmidt strength of geometrical edges of two-qubit gates

S. Balakrishnan and R. Sankaranarayanan

AIP Conference Proceedings 1384, 120 (2011)

aip.scitation.org/doi/abs/10.1063/1.3635853 

 

2.  Operator-Schmidt decomposition and the geometrical edges of two-qubit gates

S. Balakrishnan and R. Sankaranarayanan

Quantum Information Processing 10, 449 (2011)

link.springer.com/article/10.1007/s11128-010-0207-9 

 

3.  Measures of operator entanglement of two-qubit gates

S. Balakrishnan and R. Sankaranarayanan

Physical Review A 83, 062320 (2011)

journals.aps.org/pra/abstract/10.1103/PhysRevA.83.062320 

2010


1.  Entangling power and local invariants of two-qubit gates

S. Balakrishnan and R. Sankaranarayanan

Physical Review A 82, 034301 (2010)

journals.aps.org/pra/abstract/10.1103/PhysRevA.82.034301 

2009



1.  Characterizing the geometrical edges of nonlocal two-qubit gates

S. Balakrishnan and R. Sankaranarayanan

Physical Review A 79, 052339 (2009)

journals.aps.org/pra/abstract/10.1103/PhysRevA.79.052339 

2008


 

1. Entangling characterization of (SWAP)1/m and controlled unitary gates

S. Balakrishnan and R. Sankaranarayanan

Physical Review A 78, 052305 (2008)

journals.aps.org/pra/abstract/10.1103/PhysRevA.78.052305