12. Jesse Huang and Peng Zhou. Variation of GIT and variation of Lagrangian skeletons II: Quasi-symmetric case. Advances in Mathematics, 408:108597, 2022
11. Nero Budur, Robin van der Veer, Lei Wu, and Peng Zhou. Zero loci of Bernstein-Sato ideals-II. Selecta Mathematica, 27(3):1–30, 2021
10. Nero Budur, Robin van der Veer, Lei Wu, and Peng Zhou. Zero loci of Bernstein–Sato ideals. Inventiones mathematicae, 225(1):45–72, 2021
9. Lei Wu and Peng Zhou. Log-modules and index theorems. In Forum of Mathematics, Sigma, volume 9. Cambridge University Press, 2021
8. Peng Zhou. Lagrangian skeleta of hypersurfaces in (C∗)n. Selecta Math- ematica, 26:26, 2020
7. Peng Zhou. Twisted polytope sheaves and coherent–constructible corre- spondence for toric varieties. Selecta Mathematica, 25(1):1, 2019
6. Steve Zelditch and Peng Zhou. Interface asymptotics of partial Bergman kernels around a critical level. Arkiv f ̈or Matematik, 57(2):471–492, 2019
5. Steve Zelditch and Peng Zhou. Central limit theorem for spectral partial Bergman kernels. Geometry & Topology, 23(4):1961–2004, 2019
4. Steve Zelditch and Peng Zhou. Interface asymptotics of partial Bergman kernels on S1-symmetric K ̈ahler manifolds. Journal of Symplectic Geom- etry, 17(3):793–856, 2019
3. Steve Zelditch and Peng Zhou. Pointwise Weyl Law for Partial Bergman Kernels. Algebraic and Analytic Microlocal Analysis, page 589, 2018
2. Boris Hanin, Steve Zelditch, and Peng Zhou. Scaling of harmonic oscillator eigenfunctions and their nodal sets around the caustic. Communications in Mathematical Physics, 350(3):1147–1183, 2017
1. Boris Hanin, Steve Zelditch, and Peng Zhou. Nodal sets of random eigenfunctions for the isotropic harmonic oscillator. International Mathematics Research Notices, 2015(13):4813–4839, 2015