Files/Other
PHY 222 Syllabus - Free Online Textbook: Vol1 Vol2 Vol3
Practice Test Problems - examples of the kinds of questions on the tests, or review for the final.
202: Chapters 13-15
222: Vol 2 Chapters 1-4
Temp Scales: TF = 9/5 TC + 32 and TC = 5/9 (TF - 32)
Thermal Expansion: ΔL = α LO ΔT and ΔV = α VO ΔT
Sensible Heat: Q = m c ΔT
Latent Heat: Q = m L
Mixing Problems: Σ Q = 0
Conduction: Q / t = k A ΔT / d
Thermal Resistance: R = d / k
Convection: Q / t = h A ΔT
Radiation: R = P / A = e σ T 4
Ideal Gas Law: p V = n R T or p1 V1 / T1 = p2 V2 / T2 (T in Kelvin, p abs.)
Molecular Energy: KE = 3/2 k T
1st Law of Thermo: Q = ΔU + W
Efficiency: EFF = W / Q ≈ 1 - TC / TH (T in Kelvin)
k = 1.38 x 10 -23 J / K (Boltzmann's Constant)
1 kcal = 1000 cal = 4184 J = 3.97 BTU
202: Chapters 18-21
222: Vol2 Chapters 5,6,8,9,10
F = Electric Force:
Between two charges: F = k q1 q2 / r2
E = Electric Field: (unit: 1 N/C or 1 V/m)
From a point charge: E = F / q = k q1 / r2
V = Potential Difference (unit: 1 V = 1 J / C): V = W / q
I = Current (unit: 1 A = 1 C/s): I = Q / t
ρ = Resistivity: (unit: 1 Ω m):
R = Resistance (unit: 1 Ω = 1 V / A): R = ρ L / A or w/ temp R = Ro(1 + α Δ T)
Ohm's Law: V = I R
Resistors in Series: RTotal = R1 + R2 + ...
Resistors in Parallel: RTotal = (1 / R1 + 1 / R2 + ...)-1
Power (unit: 1 W = 1 J/C): P = W / t = E /t or P = IV = I2R = V2 / R
Batteries in Series: VTotal = V1 + V2 + ...
Batteries in Parallel: Voltages should match to avoid killing batteries
Kirchhoff's Rules: Σ I = 0 at a point, Σ V = 0 in a loop
C = Capacitance (unit 1 F = 1 C / V): C = Q / V or C = k εo A / d
Capacitors in Parallel: CTotal = C1 + C2 + ...
Capacitors in Series: CTotal = (1 / C1 + 1 / C2 + ...)-1
Energy of a Capacitor: E = 1/2 Q V2 = 1/2 C V2 = 1/2 Q2 / C
Capacitor Charging: Q = Qmax(1 - e-t / Τ ) and I = (V - Q / C) / R where Τ = R C and Qmax = C V
Capacitor Discharging: Q = Qo e-t / Τ
E Fields of Continuous Objects - 221 Only
E = ∫ k / r2 dQ
Rod, d from end: E = k Q / (d (d + L))
Rod, d above center: E = k Q / d [ 1 / √(d2 + (½ L)2)]
Ring of rad r, d on axis: E = k d Q / (r2 + d2)3/2
Disc of rad R, d on axis: E = 2 k Q / R2 [ 1 - d / (√(R2 + d2)]
Ф = ∮ E dA = Qenc / εo (Gauss’s Law)
k = 9 x 10^9 N m^2 / C^2 = 1 / 4 π εo (Coulomb constant)
εo = 8.854 x 10-12 F/m (electric permittivity constant)
202: Chapters 22-24
222: Vol 2 Chapters 11-15
Moving Charge generates a magnetic field!
B = Magnetic Field: (unit: 1 Tesla = 1 T = 1 N/Am = 1 Weber/m2 = 10,000 Gauss)
Straight Current: B = μI / 2πs RHR: thumb current, fingers mag field
Loop: B = μI / 2r RHR: fingers current, thumb mag field
Coil: B = μNI / L RHR: fingers current, thumb mag field
F = Magnetic Force:
Charge moving in B: F = qvB sin θ RHR: fingers v, curl B, thumb F
On current: F = ILB sin θ RHR: fingers I, curl B, thumb F
Between 2 currents: F/ L = μ I1 I2 / 2πs Dir: opposite dir currents repel
Torque on current in loop: τ = w I L B sin θ / 2 RHR: fingers I, curl B, thumb τ
Induction:
Wire moving in B: V = B L v sin θ
Mag moving in coil: V = - N Δ B A / Δt
Transformers: N1 / N2 = V1 / V2 = I2 / I1
Self Induction: V = - L Δ I / Δt where for a coil, inductance = L = μ N2 I / l
Add inductors like resistors
Energy stored in an inductor = E = ½ L I2
Current thru inductor = I = Imax (1 - e-t/τ) where τ = L / R
μ=1.257x10^-6 Tm/A OR μ=4πx10^-7 Tm/A (magnetic permeability constant)
C2 = 1 / εo μo
202: Chapters 25-27
222: Chapters Vol 2:16, Vol 3 1-3
Light: v = f λ
Reflection: θi = θr
Refraction: n1 sin θ1 = n2 sin θ2 where n = c / v
Internal Reflection: θCritical = sin -1 (n2 / n1)
Apparent Depth: app depth / actual depth = h' / h = n2 / n1
Lenses/Mirrors: 1 / di + 1 / do = 1 / f and m = hi / ho = - di / do
Signs: + / -
f: converge / diverge
di: real / virtual
m: upright / inverted
202: Chapters 16-17
222: Chapters Vol 1 15-17
Waves: ocean water, electromagnetic radiation, light, starts at the origin
y = A sin (kx - ωt + φ )
v = -Aω cos(kx - ωt + φ)
a = -Aω2 sin(kx - ωt + φ)
SHO: pendulum, spring, starts away from center
x = A cos (ωt)
v = A ω sin (ωt)
a = -A ω2 cos (ωt)
Damped: x(t) = AO e-bt/2m cos(ωt+φ)
Variable relationships :
the angular frequency (angle/seconds) ω = 2 pi f = 2 π / T
the frequency (# of waves/second) f = 1 / T
the wave velocity v = f λ= λ / T = ω / k
the wavenumber (# of waves/meter) k = 2 π / λ
Periods:
Mass on spring: T =2π √(m / k)
Simple Pend: T = 2π √(L / g)
Physical Pend: T = 2π √(I / mgL)
Torsional Pend: T = 2π √(I / K)
k h da - d c m
kilo hecto deca none deci centi milli
Order of Operations
Parentheses
Exponents
Multiplication & Division
Addition & Subtraction
Αα Alpha Νν Nu
Ββ Beta Ξξ Xi
Γγ Gamma Οο Omicron
Δδ Delta Ππ Pi
Εε Epsilon Ρρ Rho
Ζζ Zeta Σσ Sigma
Ηη Eta Ττ Tau
Θθ Theta Υυ Upsilon
Ιι Iota Φφ Phi
Κκ Kappa Χχ Chi
Λλ Lambda Ψψ Psi
Μμ Mu Ωω Omega
√ ≠ ≥ ≤ ≈ ± ∥ ∩ ∪ ∈ ⇒ ∴ ∫ ∮ ⋅