Geometric potentials as simulated for the electric dust in a Square Ring configuration.
Geometric potentials as simulated for the electric dust in a Square loop configuration.
Elliptic geometric potentials as simulated for the quantum dust in a Tetratomic Molecule. Observe the shell structures/ spherical harmonics formed by the subatomic wavelets. The individual atoms are present in a square planar configuration.
Elliptic geometric potentials as simulated for the quantum dust in a Face Centred crystal. Observe the shell structures/ spherical harmonics formed by the subatomic wavelets.
Elliptic geometric potentials as simulated for the quantum dust in a Triatomic Molecule. Observe the shell structures/ spherical harmonics formed by the subatomic wavelets. One of the atom vibrates orthogonally to the other two in-line atoms.
Elliptic geometric potentials as simulated for the quantum dust in a Molecule. Observe the shell structures/ spherical harmonics formed by the subatomic wavelets.
Elliptic geometric potentials as simulated for the quantum dust in an Atom. Observe the shell structures/ spherical harmonics formed by the subatomic wavelets.
Elliptic geometric potentials as simulated for the quantum dust in an Atom. Observe the shell structures/ orbitals formed by the subatomic wavelets.
A Voronoi arrangement of potentials undergoing dynamical dance until time equilibration.
A charged ring of atomic potentials is simulated for dynamics.
Atomic dynamics simulated under a cylindrical potential.
A 3 dimensional atom in a reciprocal geometric field.
A 3 dimensional atom in a reciprocal geometric field.
The video shows the formation of a Star triggered by a Gravitational collapse around a centre.
A reciprocal geometric field giving rise to a black hole. The dynamics shown here are a result of the GFT (Geometric Field Theory).
An atom under the action of a reciprocal spherical geometric field.
A fIne grained structure of an Atom.
Planetary motion around a star (Sun), with elliptical orbits. The planets are simulated with orbits at different planes i.e. the planets as simulated do not lie on the same plane. Geometric force field of the star sets the planets into orbital motion.
Spherical Polar Geometric force field.
Polar rotations.
Cosmic jets emanating from nebular dust.
Orthogonal geo-electromagnetic fields.
Orthogonal fields.
The atomic symmetries become visible with dynamics.