PrivateNLP 2020

Workshop on Privacy in Natural Language Processing

Colocated with EMNLP 2020, Nov 11, 2020, Punta Cana, Dominican Republic


Privacy-preserving data analysis has become essential in the age of Machine Learning (ML) where access to vast amounts of data can provide gains over tuned algorithms. A large proportion of user-contributed data comes from natural language e.g., text transcriptions from voice assistants.

It is therefore important to curate NLP datasets while preserving the privacy of the users whose data is collected, and train ML models that only retain non-identifying user data.

The workshop aims to bring together practitioners and researchers from academia and industry to discuss the challenges and approaches to designing, building, verifying, and testing privacy preserving systems in the context of Natural Language Processing.

Information about the workshop's topics of interest can be found in the Call for Papers.

Key Dates

  • Submission Deadline: TBA
  • Acceptance Notification: TBA
  • Camera-ready versions: TBA
  • Workshop: TBA


For questions/queries regarding the workshop or submission