PrivateNLP 2022
Fourth Workshop on Privacy in Natural Language Processing
Colocated with NAACL 2022, July 15, 2022, Seattle, Washington (and on Zoom)
Overview
Privacy-preserving data analysis has become essential in the age of Machine Learning (ML) where access to vast amounts of data can provide gains over tuned algorithms. A large proportion of user-contributed data comes from natural language e.g., text transcriptions from voice assistants.
It is therefore important to curate NLP datasets while preserving the privacy of the users whose data is collected, and train ML models that only retain non-identifying user data.
The workshop aims to bring together practitioners and researchers from academia and industry to discuss the challenges and approaches to designing, building, verifying, and testing privacy preserving systems in the context of Natural Language Processing.
Information about the workshop's topics of interest can be found in the Call for Papers.
Key Dates
Submission Deadline:
April 8, 2022April 20, 2022 (11.59pm UTC-12)Acceptance Notification: May 6, 2022
Camera-ready versions: May 20, 2022
Workshop: July 15, 2022
Keynote Speaker
Ilya Mironov (Meta)
Invited Speakers
Franziska Boenisch (Fraunhofer AISEC)
Esha Ghosh (Microsoft)
Agenda
Hybrid venue: Seattle, Washington and on Zoom
Date: July 15, 2022
Timezone: PST – Pacific Standard Time
Contact
For questions/queries regarding the workshop or submission: privatenlp-naacl@googlegroups.com