Search this site
Embedded Files
Prasit Bhattacharya
  • Home
  • Research
  • Teaching
    • Topology II - Spring 2024
  • Invited Talks
  • Other services
  • Resources
Prasit Bhattacharya
  • Home
  • Research
  • Teaching
    • Topology II - Spring 2024
  • Invited Talks
  • Other services
  • Resources
  • More
    • Home
    • Research
    • Teaching
      • Topology II - Spring 2024
    • Invited Talks
    • Other services
    • Resources

  TOPOLOGY-II Spring 2024

  • Lecture 1  -- Shapes, simplices, and singular n-chains

  • Lecture 2  -- Singular homology form a categorical point of view 

  • Lecture 3  -- Functor, natural transformation, and homotopy

  • Lecture 4  -- Chain homotopy and homotopy invarience of singular homology

  • Lecture 5  -- Cross products and relative homology

  • Lecture 6  -- Long exact sequence of pairs  

  • Lecture 7  -- Homology of spheres and Brower fixed point theorem

  • Lecture 8  -- Good pairs and relative homology

  • Lecture 9  -- Mayer Vietoris sequence

  • Lecture 10 -- Suspension isomorphism and reduced homology theory

  • Lecture 11 -- CW complex and CW homology 

  • Lecture 12 -- Degree theory and the hairy ball theorem

  • Lecture 13 -- Degree of maps and calculation of CW homology

  • Lecture 14 -- Rings, modules, and tensor products

  • Lecture 15 -- Homology with coefficients

  • Lecture 16 -- Universal Coefficient theorem

  • Lecture 17 -- Cartesian products and CW-chain complexes

  • Lecture 18 -- Eilenberg-Zilber and Kunneth theorem

  • Lecture 19 -- Active learning component (Eulerian sketchbook)

  • Lecture 20 -- Applications of Kunneth theorem

  • Lecture 21 -- Cochain complex and cohomology theory

  • Lecture 22 -- Universal coefficient theorem for cohomlogy theory

  • Lecture 23 -- Cup product on singular cochains

  • Lecture 24 -- Orientation theory

  • Lecture 25 -- Poincare duality and calculation of cohomology  rings

  • Homework 1 

  • Homework 2

  • Homework 3

  • Homework 4

  • Homework 5

  • Homework 6

  • Homework 7

  • Homework 8

  • Homework 9

  • Homework 10

Syllabus.pdf




  • Midterm 1 

  • Midterm 2

  • Finals (Write an exposition on your favorite topic from the class)


Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse