An influenza virus peptide binds to HLA-DR1 in an extended conformation with a pronounced twist. Thirty-five per cent of the peptide surface is accessible to solvent and potentially available for interaction with the antigen receptor on T cells. Pockets in the peptide-binding site accommodate five of the thirteen side chains of the bound peptide, and explain the peptide specificity of HLA-DR1. Twelve hydrogen bonds between conserved HLA-DR1 residues and the main chain of the peptide provide a universal mode of peptide binding, distinct from the strategy used by class I histocompatibility proteins.

The three-dimensional structure of the class II histocompatibility glycoprotein HLA-DR1 from human B-cell membranes has been determined by X-ray crystallography and is similar to that of class I HLA. Peptides are bound in an extended conformation that projects from both ends of an 'open-ended' antigen-binding groove. A prominent non-polar pocket into which an 'anchoring' peptide side chain fits is near one end of the binding groove. A dimer of the class II alpha beta heterodimers is seen in the crystal forms of HLA-DR1, suggesting class II HLA dimerization as a mechanism for initiating the cytoplasmic signalling events in T-cell activation.


Ppt On Human Eye Class 10 Download


Download File 🔥 https://urluss.com/2y4NGT 🔥



Human taxonomy is the classification of the human species (systematic name Homo sapiens, Latin: "wise man") within zoological taxonomy. The systematic genus, Homo, is designed to include both anatomically modern humans and extinct varieties of archaic humans. Current humans have been designated as subspecies Homo sapiens sapiens, differentiated, according to some, from the direct ancestor, Homo sapiens idaltu (with some other research instead classifying idaltu and current humans as belonging to the same subspecies[1][2][3]).

Since the introduction of systematic names in the 18th century, knowledge of human evolution has increased drastically, and a number of intermediate taxa have been proposed in the 20th and early 21st centuries. The most widely accepted taxonomy grouping takes the genus Homo as originating between two and three million years ago, divided into at least two species, archaic Homo erectus and modern Homo sapiens, with about a dozen further suggestions for species without universal recognition.

The genus Homo is placed in the tribe Hominini alongside Pan (chimpanzees). The two genera are estimated to have diverged over an extended time of hybridization, spanning roughly 10 to 6 million years ago, with possible admixture as late as 4 million years ago. A subtribe of uncertain validity, grouping archaic "pre-human" or "para-human" species younger than the Homo-Pan split, is Australopithecina (proposed in 1939).

A proposal by Wood and Richmond (2000) would introduce Hominina as a subtribe alongside Australopithecina, with Homo the only known genus within Hominina. Alternatively, following Cela-Conde and Ayala (2003), the "pre-human" or "proto-human" genera of Australopithecus, Ardipithecus, Praeanthropus, and possibly Sahelanthropus, may be placed on equal footing alongside the genus Homo. An even more extreme view rejects the division of Pan and Homo as separate genera, which based on the Principle of Priority would imply the reclassification of chimpanzees as Homo paniscus (or similar).[4]

Categorizing humans based on phenotypes is a socially controversial subject. Biologists originally classified races as subspecies, but contemporary anthropologists reject the concept of race as a useful tool to understanding humanity, and instead view humanity as a complex, interrelated genetic continuum. Taxonomy of the hominins continues to evolve.[5][6]

Human taxonomy on one hand involves the placement of humans within the taxonomy of the hominids (great apes), and on the other the division of archaic and modern humans into species and, if applicable, subspecies. Modern zoological taxonomy was developed by Carl Linnaeus during the 1730s to 1750s. He was the first to develop the idea that, like other biological entities, groups of people could too share taxonomic classifications.[7] He named the human species as Homo sapiens in 1758, as the only member species of the genus Homo, divided into several subspecies corresponding to the great races. The Latin noun hom (genitive hominis) means "human being". The systematic name Hominidae for the family of the great apes was introduced by John Edward Gray (1825).[8] Gray also supplied Hominini as the name of the tribe including both chimpanzees (genus Pan) and humans (genus Homo).

The discovery of the first extinct archaic human species from the fossil record dates to the mid 19th century: Homo neanderthalensis, classified in 1864. Since then, a number of other archaic species have been named, but there is no universal consensus as to their exact number. After the discovery of H. neanderthalensis, which even if "archaic" is recognizable as clearly human, late 19th to early 20th century anthropology for a time was occupied with finding the supposedly "missing link" between Homo and Pan. The "Piltdown Man" hoax of 1912 was the fraudulent presentation of such a transitional species. Since the mid-20th century, knowledge of the development of Hominini has become much more detailed, and taxonomical terminology has been altered a number of times to reflect this.

The genus Homo has been taken to originate some two million years ago, since the discovery of stone tools in Olduvai Gorge, Tanzania, in the 1960s. Homo habilis (Leakey et al., 1964) would be the first "human" species (member of genus Homo) by definition, its type specimen being the OH 7 fossils. However, the discovery of more fossils of this type has opened up the debate on the delineation of H. habilis from Australopithecus. Especially, the LD 350-1 jawbone fossil discovered in 2013, dated to 2.8 Mya, has been argued as being transitional between the two.[11] It is also disputed whether H. habilis was the first hominin to use stone tools, as Australopithecus garhi, dated to c. 2.5 Mya, has been found along with stone tool implements.[12] Fossil KNM-ER 1470 (discovered in 1972, designated Pithecanthropus rudolfensis by Alekseyev 1978) is now seen as either a third early species of Homo (alongside H. habilis and H. erectus) at about 2 million years ago, or alternatively as transitional between Australopithecus and Homo.[13]

At least a dozen species of Homo other than Homo sapiens have been proposed, with varying degrees of consensus. Homo erectus is widely recognized as the species directly ancestral to Homo sapiens.[citation needed] Most other proposed species are proposed as alternatively belonging to either Homo erectus or Homo sapiens as a subspecies. This concerns Homo ergaster in particular.[17][18] One proposal divides Homo erectus into an African and an Asian variety; the African is Homo ergaster, and the Asian is Homo erectus sensu stricto. (Inclusion of Homo ergaster with Asian Homo erectus is Homo erectus sensu lato.)[19] There appears to be a recent trend, with the availability of ever more difficult-to-classify fossils such as the Dmanisi skulls (2013) or Homo naledi fossils (2015) to subsume all archaic varieties under Homo erectus.[20][21][22]

The recognition or nonrecognition of subspecies of Homo sapiens has a complicated history. The rank of subspecies in zoology is introduced for convenience, and not by objective criteria, based on pragmatic consideration of factors such as geographic isolation and sexual selection. The informal taxonomic rank of race is variously considered equivalent or subordinate to the rank of subspecies, and the division of anatomically modern humans (H. sapiens) into subspecies is closely tied to the recognition of major racial groupings based on human genetic variation.

A subspecies cannot be recognized independently: a species will either be recognized as having no subspecies at all or at least two (including any that are extinct). Therefore, the designation of an extant subspecies Homo sapiens sapiens only makes sense if at least one other subspecies is recognized. H. s. sapiens is attributed to "Linnaeus (1758)" by the taxonomic Principle of Coordination.[42] During the 19th to mid-20th century, it was common practice to classify the major divisions of extant H. sapiens as subspecies, following Linnaeus (1758), who had recognized H. s. americanus, H. s. europaeus, H. s. asiaticus and H. s. afer as grouping the native populations of the Americas, West Eurasia, East Asia and Sub-Saharan Africa, respectively. Linnaeus also included H. s. ferus, for the "wild" form which he identified with feral children, and two other "wild" forms for reported specimens now considered very dubious (see cryptozoology), H. s. monstrosus and H. s. troglodytes.[43]

Since the 2000s, the extinct Homo sapiens idaltu (White et al., 2003) has gained wide recognition as a subspecies of Homo sapiens, but even in this case there is a dissenting view arguing that "the skulls may not be distinctive enough to warrant a new subspecies name".[56] H. s. neanderthalensis and H. s. rhodesiensis continue to be considered separate species by some authorities, but the 2010s discovery of genetic evidence of archaic human admixture with modern humans has reopened the details of taxonomy of archaic humans.[57]

The class I histocompatibility antigen from human cell membranes has two structural motifs: the membrane-proximal end of the glycoprotein contains two domains with immunoglobulin-folds that are paired in a novel manner, and the region distal from the membrane is a platform of eight antiparallel -strands topped by -helices. A large groove between the -helices provides a binding site for processed foreign antigens. An unknown 'antigen' is found in this site in crystals of purified HLA-A2. e24fc04721

you wouldn 39;t download a car meme generator

download chrome google chrome

lamborghini huracan evo

how to download stop motion studio

aplikasi download dana