[a, b, 1] = (a^b)*b
[a, 1, b, c ... n] = a
[a,b,c] = (a^(b^c))*(b*c)
[a, b, c ... n] = (a^(b^(c ... n)))*(((n-1 ... c)*b)*a)
[a(1)1] = a
[a(1)b] = [a, a, a...] (b a's)
[a(2)1] = [a(1)a]
[a(2)b] = [a(1)a(1)a...]
[a(c)b] = [a(c-1)a(c-1)a(c-1)a...] (b times)
[a(a)a] = [a((1))1]
[a((1))b] = [a(a)a(a)...] (b times)
[a((c))b] = [a((c-1))a((c-1))a((c-1))a((c-1))a...] (b times)
[a@b] = [a((...((a))...))a] (b times)
[a@b@c] = [a((...((a))...))a] ([b@c] times)
[a@b@c...] = [a((...((a))...))a] ([b@c@d...] times) (The limit)
[1, 1] = 1
[5, 5] = (5^5)*5 = 15625
[3, 3, 3] = (3↑↑3)*(3*3)
[4, 4, 4, 4] = (4↑↑4)*(4^3)
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10] = (10^^10)*(10^9)
[10(1)10] = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]
[3((1))1] = [3(3)3]
[3((1))2]= [3(3)3(3)3]
[3@3] = [3(((3)))3]
Fe(1, #) = Fe(1)
Fe(#, 1) = Fe(#)
Fe(#[#]1) = Fe(1)
Fe(n) = n^(n!)
Fe(1, #) = Fe(1)
Fe(#, 1) = Fe(#)
Fe(n, 2) = Fe(Fe(n)^(n!))
Fe(n, m) = Fe(Fe(n, m-1)^(n!))
Fe(n, m, 2) = Fe(Fe(n, m-1)^(n!))^2
Fe(n, m, o) = Fe(Fe(n, m-1)^(n!))^o
Fe(n, m, o, p) = (Fe(Fe(n, m-1)^(n!)^o)^^p
Fe(n, m, o, p, q) = (Fe(n, m, o, p)^^^q)
Fe(n[1]2) = Fe(n, n, n, n...) (n times)
Fe(n[1]3) = Fe(n[1]2)^(n^(n!))
Fe(n[1]m) = Fe(n[1]m-1)^(n{m-2}(n!))
Fe(n[2]2) = Fe(n[1]n) = Fe(n[1]n-1)^(n{n}(n!))
Fe(n[2]3) = Fe(n[2]2)^(n{n}(n!))
Fe(n[m]o) = Fe(n[m-1]o-1)^(n{n}(n!))
Fe(n[1,2]1) = Fe(n[n]n)^(n!)
Fe(n[1,2]m) = Fe(n[1,2]m-1)^(((...(n)!)!)...!) (m times)
Fe(n[1,3]1) = Fe(n[1,2]n){n}(n!)
Fe(n[1,3]m) = Fe(n[1,3]m-1){n}(n!)
Fe(n[1,m]o) = Fe(n[1, m]o-1){n}(n!)
Fe(n[2,1]1) = Fe(n[1,n]n){{1}}(n!)
Fe(n[2,1]m) = Fe(n[2,1]m-1){{1}}(n!)
Fe(n[2,m]1) = Fe(n[2,m-1]n){{1}}(n!)
Fe(n[2,m]o) = Fe(n[2,m]o-1){{1}}(n!)
Fe(n[3,1]1) = Fe(n[2,n]n){{{1}}}(n!)
Fe(n[m,1]1) = {Fe(n[m-1,n]n), (n!), 1, m}
Fe(n[m,o]p) = {Fe(n[m,o]p-1), (n!), 1, m}
Fe(n[1, 1, 2]1) = Fe(n[n,n]n-1) = {Fe(n[n,n]n-1), (n!), 1, n}