1. Kumar, R., Saini, R., Singh, D., Kaushik, S., and Nandi, A.K. (2025). miR159b, an epigenetic target of RSI1/FLD, negatively regulates systemic acquired resistance. Plant J. 124, e70519; doi: 10.1111/tpj.70519
2. Nishad, A., Gautam, J.K., Agarwal, I., and Nandi, A.K. (2025). Immune Priming Promotes Thermotolerance, Whereas Thermopriming Suppresses Systemic Acquired Resistance in Arabidopsis. Plant Cell Env 48, 3352–3363; doi: 10.1111/pce.15364
3. Rani, S., Roy, S., and Nandi, A.K. (2025). Pathogen induces MEDEA gene in a parent-of-origin nonspecific manner and causes embryo lethality in MEDEA overexpressing plants. J Plant Biochem Biotechnol; doi: 10.1007/s13562-025-00999-0
4. Saxena, S., Roy, S., Ahmad, M.N., and Nandi, A.K. (2025). LDL2 and PAO5 genes are essential for systemic acquired resistance in Arabidopsis thaliana. Physiol. Plant. 177, e70102; doi: 10.1111/ppl.70102
5. Singh, D., Patil, V., Kumar, R., Gautam, J.K., Singh, V., and Nandi, A.K. (2023). RSI1/FLD and its epigenetic target RRTF1 are essential for the retention of infection memory in Arabidopsis thaliana. Plant J. 115, 662–677; doi: 10.1111/tpj.16252
6. Patil, V., and Nandi, A.K. (2022). POWERDRESS positively regulates systemic acquired resistance in Arabidopsis. Plant Cell Rep. 41, 2351–2362; doi: 10.1007/s00299-022-02926-2
7. Singh, A., Sharma, A., Singh, N., and Nandi, A.K. (2022). MTO1-RESPONDING DOWN 1 (MRD1) is a transcriptional target of OZF1 for promoting salicylic acid-mediated defense in Arabidopsis. Plant Cell Rep. 41, 1319–1328; doi: 10.1007/s00299-022-02861-2
8. Singh, N., and Nandi, A.K. (2022). AtOZF1 positively regulates JA signaling and SA-JA cross-talk in Arabidopsis thaliana. J Biosci. 47, 8; doi: 10.1007/s12038-021-00243-6
9. Gautam, J.K., Giri, M.K., Singh, D., Chattopadhyay, S., and Nandi, A.K. (2021). MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. Physiol. Plant. 173, 2248–2261; doi: 10.1111/ppl.13575
10. Singh, P., Sharma, A., Nandi, A.K., and Nandi, S.P. (2021). Endophytes from Argemone mexicana and Datura metel activate induced-systemic resistance in multiple hosts and show host- and pathogen-specific protection. J Plant Biochem. Biotechnol. 30, 1016–1019; doi: 10.1007/s13562-021-00734-5
11. Gupta, P., and Nandi, A.K. (2020). Long-chain base kinase1 promotes salicylic acid-mediated stomatal immunity in Arabidopsis thaliana. J Plant Biochem Biotechnol 29, 796–803; doi: 10.1007/s13562-020-00608-2
12. Gupta, P., Roy, S., and Nandi, A.K. (2020). MEDEA-interacting protein LONG-CHAIN BASE KINASE 1 promotes pattern-triggered immunity in Arabidopsis thaliana. Plant Mol. Biol. 103, 173–184; doi: 10.1007/s11103-020-00982-4
13. Kumar, R., Barua, P., Chakraborty, N., and Nandi, A.K. (2020). Systemic acquired resistance specific proteome of Arabidopsis thaliana. Plant Cell Rep. 39, 1549–1563; doi: 10.1007/s00299-020-02583-3
14. Roy, S., Saxena, S., Sinha, A., and Nandi, A.K. (2020). DORMANCY/AUXIN ASSOCIATED FAMILY PROTEIN 2 of Arabidopsis thaliana is a negative regulator of local and systemic acquired resistance. J. Plant Res. 133, 409–417; doi: 10.1007/s10265-020-01183-2
15. Chakraborty, J., Ghosh, P., Sen, S., Nandi, A.K., and Das, S. (2019). CaMPK9 increases the stability of CaWRKY40 transcription factor which triggers defense response in chickpea upon Fusarium oxysporum f. sp. ciceri Race1 infection. Plant Mol. Biol. 100, 411–431; doi: 10.1007/s11103-019-00868-0
16. Singh, V., Singh, D., Gautam, J.K., and Nandi, A.K. (2019). RSI1/FLD is a positive regulator for defense against necrotrophic pathogens. Physiol. Mol. Plant Pathol. 107, 40–45; doi: 10.1016/j.pmpp.2019.04.005
17. Banday, Z.Z., and Nandi, A.K. (2018). Arabidopsis thaliana GLUTATHIONE-S-TRANSFERASE THETA 2 interacts with RSI1/FLD to activate systemic acquired resistance. Mol Plant Pathol 19, 464–475; doi: 10.1111/mpp.12538
18. Gautam, J.K., and Nandi, A.K. (2018). APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. Plant Physiol. Biochem. 133, 92–99; doi: 10.1016/j.plaphy.2018.10.026
19. Roy, S., Gupta, P., Rajabhoj, M.P., Maruthachalam, R., and Nandi, A.K. (2018). The polycomb-group repressor MEDEA attenuates pathogen defense. Plant Physiol. 177, 1728–1742; doi: 10.1104/pp.17.01579
20. Singh, N., Swain, S., Singh, A., and Nandi, A.K. (2018). AtOZF1 positively regulates defense against bacterial pathogens and NPR1-independent salicylic scid signaling. Mol Plant Microbe Interact 31, 323–333; doi: 10.1094/MPMI-08-17-0208-R
21. Bhattacharjee, L., Singh, D., Gautam, J.K., and Nandi, A.K. (2017). Arabidopsis thaliana serpins AtSRP4 and AtSRP5 negatively regulate stress-induced cell death and effector-triggered immunity induced by bacterial effector AvrRpt2. Physiol. Plant. 159, 329–339; doi: 10.1111/ppl.12516
22. Giri, M.K., Gautam, J.K., Rajendra Prasad, V.B., Chattopadhyay, S., and Nandi, A.K. (2017). Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling. J. Biosci. 42, 501–508; doi: 10.1007/s12038-017-9703-8
23. Giri, M.K., Singh, N., Banday, Z.Z., Singh, V., Ram, H., Singh, D., Chattopadhyay, S., and Nandi, A.K. (2017). GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. Plant J. 91, 802–815; doi: 10.1111/tpj.13608
24. Roy, S., and Nandi, A.K. (2017). Arabidopsis thaliana methionine sulfoxide reductase B8 influences stress-induced cell death and effector-triggered immunity. Plant Mol. Biol. 93, 109–120; doi: 10.1007/s11103-016-0550-z
25. Sardar, A., Nandi, A.K., and Chattopadhyay, D. (2017). CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. J. Exp. Bot. 68, 3573–3584; doi: 10.1093/jxb/erx170
26. Singh, S., Singh, A., and Nandi, A.K. (2016). The rice OsSAG12-2 gene codes for a functional protease that negatively regulates stress-induced cell death. J Biosci 41, 445–453; doi: 10.1007/s12038-016-9626-9
27. Singh, V., Singh, P.K., Siddiqui, A., Singh, S., Banday, Z.Z., and Nandi, A.K. (2016). Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. J. Plant Res. 129, 285–293; doi: 10.1007/s10265-015-0781-0
28. Bhattacharjee, L., Singh, P.K., Singh, S., and Nandi, A.K. (2015). Down-regulation of rice serpin gene OsSRP-LRS exaggerates stress-induced cell death. J. Plant Biol 58, 327–332; doi: 10.1007/s12374-015-0283-6
29. Swain, S., Singh, N., and Nandi, A.K. (2015). Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant. J Biosci 40, 137–146; doi: 10.1007/s12038-014-9498-9
30. Giri, M.K., Swain, S., Gautam, J.K., Singh, S., Singh, N., Bhattacharjee, L., and Nandi, A.K. (2014). The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J. Plant Physiol. 171, 860–867; doi: 10.1016/j.jplph.2013.12.015
31. Singh, V., Banday, Z.Z., and Nandi, A.K. (2014). Exogenous application of histone demethylase inhibitor trans-2-phenylcyclopropylamine mimics FLD loss-of-function phenotype in terms of systemic acquired resistance in Arabidopsis thaliana. Plant Sig Behav 9, e29658; doi: 10.4161/psb.29658
32. Singh, V., Roy, S., Singh, D., and Nandi, A.K. (2014). Arabidopsis FLOWERING LOCUS D influences systemic-acquired-resistance- induced expression and histone modifications of WRKY genes. J Biosci 39, 119–126; doi: 10.1007/s12038-013-9407-7
33. Singh, S., Giri, M.K., Singh, P.K., Siddiqui, A., and Nandi, A.K. (2013). Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 38, 583–592; doi: 10.1007/s12038-013-9334-7
34. Singh, V., Roy, S., Giri, M.K., Chaturvedi, R., Chowdhury, Z., Shah, J., and Nandi, A.K. (2013). Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Mol Plant Microbe Interact 26, 1079–1088; doi: 10.1094/MPMI-04-13-0096-R
35. Prasad, B.R., Kumar, S.V., Nandi, A., and Chattopadhyay, S. (2012). Functional interconnections of HY1 with MYC2 and HY5 in Arabidopsis seedling development. BMC Plant Biol. 12, 37; doi: 10.1186/1471-2229-12-37
36. Prasad, V.B., Gupta, N., Nandi, A., and Chattopadhyay, S. (2012). HY1 genetically interacts with GBF1 and regulates the activity of the Z-box containing promoters in light signaling pathways in Arabidopsis thaliana. Mech Dev 129, 298–307; doi: 10.1016/j.mod.2012.06.004
37. Swain, S., Roy, S., Shah, J., Van Wees, S., Pieterse, C.M., and Nandi, A.K. (2011). Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol. Plant Pathol. 12, 855–865; doi: 10.1111/j.1364-3703.2011.00717.x
38. Chaturvedi, R., Krothapalli, K., Makandar, R., Nandi, A., Sparks, A.A., Roth, M.R., Welti, R., and Shah, J. (2008). Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J. 54, 106–117; doi: 10.1111/j.1365-313X.2007.03400.x
39. Nandi, A., Moeder, W., Kachroo, P., Klessig, D.F., and Shah, J. (2005). Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Mol Plant Microbe Interact 18, 363–370; doi: 10.1094/MPMI-18-0363
40. Nandi, A., Welti, R., and Shah, J. (2004). The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16, 465–477; doi: 10.1105/tpc.016907
41. Sekine, K., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H. (2004). Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism. Mol Plant Microbe Interact 17, 623–632; doi: 10.1094/MPMI.2004.17.6.623
42. Nandi, A., Krothapalli, K., Buseman, C.M., Li, M., Welti, R., Enyedi, A., and Shah, J. (2003). Arabidopsis sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death, and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 15, 2383–2398; doi: 10.1105/tpc.015529
43. Nandi, A.K., Kachroo, P., Fukushige, H., Hildebrand, D.F., Klessig, D.F., and Shah, J. (2003). Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact 16, 588–599; doi: 10.1094/MPMI.2003.16.7.588
44. Shah, J., Kachroo, P., Nandi, A., and Klessig, D.F. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant J. 25, 563–574; doi: 10.1046/j.1365-313x.2001.00992.x
45. Nandi, A.K., Kushalappa, K., Prasad, K., and Vijayraghavan, U. (2000). A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Curr. Biol. 10, 215–218; doi: S0960-9822(00)00341-9 [pii]
46. Nandi, A.K., Basu, D., Das, S., and Sen, S.K. (1999). High level expression of soybean trypsin inhibitor gene in transgenic tobacco plants failed to confer resistance against damage caused by Helicoverpa armigera. J Biosc 24, 445–452; doi: 10.1007/BF02942655
1. Saini, R., & Nandi, A. K. (2022). TOPLESS in the regulation of plant immunity. Plant Molecular Biology, 109(1-2), 1–12. https://doi.org/10.1007/s11103-022-01258-9
2. Nishad, A., & Nandi, A. K. (2021). Recent advances in plant thermomemory. Plant Cell Reports, 40(1), 19–27. https://doi.org/10.1007/s00299-020-02604-1
3. Patil, V., & Nandi, A. K. (2020). Role of MAPK cascade in local and systemic acquired imunity. In G. K. Pandey (Ed.), In protein kinase and stress signaling in plants: Functional Genomic perspective (pp. 422–444). John Wiley & Sons. Hoboken, NJ, USA. https://doi.org/10.1002/9781119541578.ch18
4. Nandi, A. K. (2016). Application of anti-microbial proteins and peptides in developing disease-resistant plants. In D. B. Collinge (Ed.), Plant Pathogen Resistance Biotechnology (pp. 51–70). John Wiley & Sons, Inc., of 111 River Street, Hoboken, NJ 07030. https://doi.org/10.1002/9781118867716.ch3
5. Banday, Z. Z., & Nandi, A. K. (2015). Interconnection between flowering time control and activation of systemic acquired resistance. Front Plant Sci, 6, 174. https://doi.org/10.3389/fpls.2015.00174