Note: The detailed course material can be modified.
For the Cont. Case, we will use the slides from the previous lecture.
Lecture - 1. Tuesday: Introduction,
Lecture -1. Thursday: Generative Model, Introduction (steps to reach stable diffusion)
Lecture - 2. Tuesday: Autoencdoer -1.1
Lecture - 2. Thursday: Autoencdoer -1.2
Lecture - 3. Tuesday: Holiday
Lecture - 3. Thursday: Autoencdoer -2.2
Lecture - 4. Tuesday: Autoencdoer -3.1
Lecture - 4. Thursday: Autoencdoer -3.2
Lecture - 5. Tuesday: Holiday
Lecture - 5. Thursday: Holiday
Lecture - 6. Tuesday: Variational Autoencoder -2.1
Lecture - 6. Thursday: Variational Autoencoder -2.2
Lecture - 7. Tuesday: Variational Autoencoder -3.1
Lecture-7. Thursday: Variational Autoencoder -3.2
Lecture-8. Tuesday: Test week
Lecture-8. Thursday: Midterm
Lecture - 9. Tuesday: Generative Adversarial Network -1.1
Lecture - 9. Thursday: Generative Adversarial Network -1.2
Lecture - 10. Tuesday: Generative Adversarial Network -2.1
Lecture - 10 Thursday: Generative Adversarial Network -2.2
Lecture - 11. Tuesday: Generative Adversarial Network -3.1
Lecture - 11. Thursday: Generative Adversarial Network -3.2
Lecture - 12. Tuesday: Autoregressive Model -1.1
Lecture - 12. Thursday: Autoregressive Model -1.2
Lecture - 13. Tuesday: Autoregressive Model -2.1
Lecture - 13. Thursday: Autoregressive Model -2.2
Lecture - 14. Tuesday: Diffusion -1.1
Lecture - 14. Thursday: Diffusion -1.2
Lecture - 15. Tuesday: (Latent) Diffusion -2.1
Lecture - 15. Thursday: (Latent) Diffusion -2.2
Lecture-16. Tuesday: Test week
Lecture-16. Thursday: Final Exam