The advent of parallel computing paradigm that requires large bandwidth has created a need for integrating high performance photonic systems with electronics. Also, new computing fields where photonics can play unique roles are emerging such as optical neural network and hyperscale computing. In our group, we are developing scalable and power-efficient photonic integrated circuits such as silicon photonic switches, tunable directional couplers, and optical phase shifters.
<Silicon photonic switches for data centers and hyper-scale computing>
<Large-scale tunable directional coupler switches for optical computing>
Mid-infrared (mid-IR) wavelength region (2 – 20 μm) is so-called “molecular fingerprint region” where vibration energies of molecules lied. By analyzing the absorption spectrum of mid-infrared region, one can extract information on existence, spatial distribution, and structure of the molecules. Therefore, the information can be used for chem/bio analysis such as breath analysis, cancer diagnosis, gas sensing, and pollution monitoring. In our group, we are developing nanophotonic mid-IR lasers for high-performance and portable spectroscopy on chip.