Major periodic trends include: electronegativity, ionization energy, electron affinity, atomic radius, melting point, and metallic character. Periodic trends, arising from the arrangement of the periodic table, provide chemists with an invaluable tool to quickly predict an element's properties.
click on the link below to understand the trends in properties of periodic table
One of the important features of long i‘ettn on periodic table it that several properties of elements vary in regular fashion in going some period or going down the group Such properties on called periodic properties. When the elements are arranged in their increasing order of their atomic numbers, they get arranged in such way that the elements with similar properties reccur at regular intervals, The periodic recurrence of elements having similar properties after regular intervals is called periodicity The distribution of electrons in the valence shell of an atom is most important and it is mainly responsible for physical and chemical properties of the elements For example, all halogens present in group No 1 possess ns2 np5 configuration in their valence shell and show similar properties. In this section the periodic trends in certain physical properties are explained in terms of number of electrons and energy levels
Trends in physical properties
There are numerous physical properties of elements such as boiling point and melting point.Heats of fusion and vapourisation, energy of atomization, etc. which show periodic variations However the periodic trends with respect to atomic and ionic radii, ionization enthalpy, electron gain enthalpy electronegativity, valency and oxidation states discussed here.
One must know that size of atom is small (l 2 x 10*m radius) Size of atom is usually expressed in terms of radius called atomic radius. It is very important property because many physical and chemical properties are related to it.
The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding cloud of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Three widely used definitions of atomic radius are: Van der Waals radius, ionic radius, and covalent radius.
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FChemical_element&sa=D
Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. The value of the radius may depend on the atom's state and context.
Electrons do not have definite orbits, or sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms.
Under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 ångströms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), and less than 1/1000 of the wavelength of visible light (400–700 nm).
The approximate shape of a molecule of ethanol, CH3CH2OH. Each atom is modeled by a sphere with the element's Van der Waals radius.
For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.[citation needed]
Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory. The atomic radii decrease across the Periodic Table because as the atomic number increases, the number of protons increases across the period, but the extra electrons are only added to the same quantum shell. Therefore, the effective nuclear charge towards the outermost electrons increases, drawing the outermost electrons closer. As a result, the electron cloud contracts and the atomic radius decrease.
Factors affecting atomic size
Shielding effect of orbitals decrease like this : S>p>d>f. It mean s orbital have maximum capacity of shielding the nucleus, why?, because s orbital is spherical which means it can act like a screen which covers the nucleus by the angle of 360 degree.
Electronegativity can be understood as a chemical property describing an atom's ability to attract and bind with electrons. Because electronegativity is a qualitative property, there is no standardized method for calculating electronegativity. However, the most common scale for quantifying electronegativity is the Pauling scale, named after the chemist Linus Pauling. The numbers assigned by the Pauling scale are dimensionless due to the qualitative nature of electronegativity. Electronegativity values for each element can be found on certain periodic tables. An example is provided below.
Electronegativity measures an atom's tendency to attract and form bonds with electrons. This property exists due to the electronic configuration of atoms. Most atoms follow the octet rule (having the valence, or outer, shell comprise of 8 electrons). Because elements on the left side of the periodic table have less than a half-full valence shell, the energy required to gain electrons is significantly higher compared with the energy required to lose electrons. As a result, the elements on the left side of the periodic table generally lose electrons when forming bonds. Conversely, elements on the right side of the periodic table are more energy-efficient in gaining electrons to create a complete valence shell of 8 electrons. The nature of electronegativity is effectively described thus: the more inclined an atom is to gain electrons, the more likely that atom will pull electrons toward itself.
Ionization energy is the energy required to remove an electron from a neutral atom in its gaseous phase. Conceptually, ionization energy is the opposite of electronegativity. The lower this energy is, the more readily the atom becomes a cation. Therefore, the higher this energy is, the more unlikely it is the atom becomes a cation. Generally, elements on the right side of the periodic table have a higher ionization energy because their valence shell is nearly filled. Elements on the left side of the periodic table have low ionization energies because of their willingness to lose electrons and become cations. Thus, ionization energy increases from left to right on the periodic table.
Another factor that affects ionization energy is electron shielding. Electron shielding describes the ability of an atom's inner electrons to shield its positively-charged nucleus from its valence electrons. When moving to the right of a period, the number of electrons increases and the strength of shielding increases. As a result, it is easier for valence shell electrons to ionize, and thus the ionization energy decreases down a group. Electron shielding is also known as screening.
NOTE
Some elements have several ionization energies; these varying energies are referred to as the first ionization energy, the second ionization energy, third ionization energy, etc. The first ionization energy is the energy requiredto remove the outermost, or highest, energy electron, the second ionization energy is the energy required to remove any subsequent high-energy electron from a gaseous cation, etc. Below are the chemical equations describing the first and second ionization energies:
X(g)→X+(g)+e−(1.1)(1.1)X(g)→X(g)++e−
Second Ionization Energy:
X+(g)→X2+(g)+e−(1.2)(1.2)X(g)+→X(g)2++e−
Generally, any subsequent ionization energies (2nd, 3rd, etc.) follow the same periodic trend as the first ionization energy.
As the name suggests, electron affinity is the ability of an atom to accept an electron. Unlike electronegativity, electron affinity is a quantitative measurement of the energy change that occurs when an electron is added to a neutral gas atom. The more negative the electron affinity value, the higher an atom's affinity for electrons.
Electron affinity generally decreases down a group of elements because each atom is larger than the atom above it (this is the atomic radius trend, discussed below). This means that an added electron is further away from the atom's nucleus compared with its position in the smaller atom. With a larger distance between the negatively-charged electron and the positively-charged nucleus, the force of attraction is relatively weaker. Therefore, electron affinity decreases. Moving from left to right across a period, atoms become smaller as the forces of attraction become stronger. This causes the electron to move closer to the nucleus, thus increasing the electron affinity from left to right across a period.
NOTE