1. Perform the Measurement of Horizontal Distances
How it's done: Measured using chains, tapes, or EDM (Electronic Distance Measurement) tools via total stations or GPS systems.
Considerations:
Slope correction if not measuring horizontally.
Temperature correction for tapes.
Tension and sag corrections (especially with steel tapes). Sag Correction= w^2 * L / 24 P^2
References:
Lindeburg (CERM)
Cuomo
Wolf & Brinker
Ghilani
2. Perform the Measurement of Angles
Instruments used: Theodolite or total station.
Types of angles:
Horizontal angle: Often used in traverses and layout.
Vertical angle: Used in determining elevation changes (trigonometric leveling).
Procedure:
Sight two known points.
Record angle from instrument zero or a reference.
References:
Anderson & Mikhail
Wolf & Brinker
CERM
3. Perform the Measurement of Elevations
Two main methods:
Differential leveling: Uses a level and rod to measure elevation difference between points.
Trigonometric leveling: Uses angles and horizontal distances to calculate elevation changes.
Key Concepts:
Height of Instrument (HI)
Back sight (BS), Fore sight (FS)
Elevation = HI - FS (or HI + BS if leveling up)
References:
Ghilani
Moffitt & Bossler
Cuomo
CERM
4. Determine Potential Construction Conflicts
Purpose: Identify where new structures might interfere with:
Existing utilities
Substructures (e.g., foundations, tunnels)
Right-of-way or property boundaries
How:
Overlay proposed design on existing topographic survey.
Use GIS or field verification tools.
References:
Subdivision Map Act
CERM
Surveying with Construction Applications (Kavanagh)
1. Establishing Points or Alignments Using Distances and Angles
Use: For roadway centerlines, property lines, or building layout.
Method:
Set instrument over known point.
Measure angle and distance to new point.
Terms:
Traverse, Backsight, Foresight
Bearing/Azimuth systems
References:
Cuomo
Wolf & Brinker
Anderson & Mikhail
2. Establishing Elevations Using Trigonometric and Differential Leveling
Trigonometric Leveling:
Used where differential leveling is impractical (e.g., across rivers, valleys).
Requires vertical angle and horizontal distance.
Differential Leveling:
Preferred for high-accuracy.
Setup level at midpoint between two points to reduce error.
References:
Ghilani
Moffitt & Bossler
Cuomo
CERM
3. Surveying Equipment Usage
Common Equipment:
Total station: Combines EDM and theodolite.
Auto-level or digital level: For differential leveling.
Leveling rod, tripod, prism pole, GPS rover.
Skills:
Set up, calibrate, and troubleshoot instruments.
Check for collimation and parallax errors.
References:
Anderson & Mikhail
Ghilani
Kavanagh & Slattery
4. Creating and Checking Level Notes
Field Book Entries:
Date, weather, crew, project
Station, BS, FS, HI, Elevation
Loop closure check to detect errors
Types of Level Notes:
Height of instrument method
Rise and fall method
Importance:
Legal documentation of field work.
Must be neat, error-checked, and signed.
References:
Cuomo
CERM
Wolf & Brinker
3 Definitions
🔹 Interior Angle
The angle measured inside a traverse polygon at a vertex between two adjacent lines.
🔹 Deflection Angle
The angle by which a line deflects from the extension of the previous line, measured from the back line to the forward line (right or left).
🔹 Bearing Change
The change in direction (azimuth or bearing) from one line to another.
Deflection angle is related to interior angle by:
δ=180∘−θ\delta = 180^\circ - \thetaδ=180∘−θ
where:
δ\deltaδ = deflection angle
θ\thetaθ = interior angle
Bearing change between two lines is equal to the deflection angle if turning from the extension of one line to the next.
Given:
Interior angle = 65°
Using the formula:
δ=180∘−65∘=115∘\delta = 180^\circ - 65^\circ = 115^\circδ=180∘−65∘=115∘
Therefore, the bearing change (change in direction from one leg to the next) is 115°
But the original question says:
Interior angle = 65°, deflection = 115°, what is the bearing change?
This phrasing is confusing because:
If deflection angle is 115°, it already is the bearing change (it's the angle turned between two lines).
There's no additional calculation needed. So bearing change = 115°
That reverses the formula. The deflection is derived from the interior angle, not the other way around.
If interior angle is 65°, then deflection = 115°, and the bearing change is also 115°.
Ghilani, Elementary Surveying (15th Ed.), Chapter on traverse adjustment and angle types.
Anderson & Mikhail, Surveying: Theory and Practice, angle relationships and traverse geometry.
Cuomo, Surveying Principles, definitions of angle types and layout procedures.
Would you like me to revise the quiz code to reflect this correction too?
You said:
farsi
ChatGPT said:
حتماً، در ادامه توضیح فارسی این مسئله را میبینید:
زاویه داخلی (Interior Angle):
زاویهای است که بین دو خط مجاور در یک چندضلعی (مانند تراورس) در داخل شکل اندازهگیری میشود.
زاویه انحراف (Deflection Angle):
زاویهای است که جهت یک خط نسبت به امتداد خط قبلی تغییر میکند. این زاویه بین امتداد خط قبلی و خط بعدی محاسبه میشود (به سمت راست یا چپ).
تغییر برد (Bearing Change):
میزان تغییر جهت از یک خط به خط بعدی در یک مسیر.
زاویه انحراف=180∘−زاویه داخلی\text{زاویه انحراف} = 180^\circ - \text{زاویه داخلی}زاویه انحراف=180∘−زاویه داخلی
فرض کنید زاویه داخلی برابر با ۶۵ درجه است.
محاسبه زاویه انحراف:
زاویه انحراف=180∘−65∘=115∘\text{زاویه انحراف} = 180^\circ - 65^\circ = 115^\circزاویه انحراف=180∘−65∘=115∘
پس اگر زاویه داخلی داده شده باشد، زاویه انحراف برابر ۱۱۵ درجه میشود.
در سؤال شما آمده:
زاویه داخلی = ۶۵° و زاویه انحراف = ۱۱۵°
در نتیجه:
تغییر برد هم برابر است با همان زاویه انحراف = ۱۱۵ درجه
اگر در سؤال نوشته شده بود:
زاویه انحراف ۱۱۵ درجه است، برد جدید نسبت به قبلی چقدر تغییر کرده؟
جواب مستقیم است: همان ۱۱۵ درجه
ولی اگر زاویه داخلی داده شده باشد، باید از فرمول بالا برای محاسبه زاویه انحراف استفاده کرد.
کتاب Ghilani، برداشت مقدماتی، چاپ ۱۵
کتاب Anderson & Mikhail، تئوری و عمل نقشهبرداری
کتاب Cuomo، اصول نقشهبرداری
اگر مایل باشی، سوال مربوطه را در آزمون HTML هم اصلاح میکنم. میخواهی این رو هم درست کنم؟