Speech and Language in Brains, Minds and Machine
Publications
Publications Google scholar
Articles Under Review
Surendra, K., Schilling, A., Stoewer, P. Maier, A., & Krauss, P.
Word class representations spontaneously emerge in a deep neural network trained on next word prediction.
preprint: arxiv.org/abs/2302.07588
Gerum, R., Erpenbeck, A., Krauss, P., & Schilling, A.
Leaky-Integrate-and-Fire Neuron-Like Long-Short-Term-Memory Units as Model System in Computational Biology.
Stoll, A., Krauss, P., Maier, A., Gerum, R., & Schilling, A.
Coincidence Detection and Integration Behavior in Spiking Neural Networks.
Schilling, A., Sedley, W., Gerum, R., Metzner, C., Tziridis, K., Maier, A., Schulze, H., Zeng, F.-G., Friston, K.J., & Krauss, P.
Predictive coding and stochastic resonance as fundamental principles of auditory (phantom) perception.
preprint: arxiv.org/abs/2204.03354
Schilling, A., Gerum, R., Boehm, C., Rasheed, J., Metzner, C., Maier, A., Reindl, C., Hamer, H., & Krauss, P.
Deep learning based decoding of local field potentials.
preprint: doi.org/10.1101/2022.10.14.512209
Schilling, A., Tziridis, K., Schulze, H., & Krauss, P.
Behavioral assessment of Zwicker tone percepts in rodents.
preprint: doi.org/10.1101/2022.12.22.521554
Metzner, C., Schilling, A., Traxdorf, M., Schulze, H., Tziridis, K., & Krauss, P.
Extracting continuous sleep depth from EEG data without machine learning.
preprint: arxiv.org/abs/2301.06755
Metzner, C., Yamakou, M., Voelkl, D., Schilling, A., & Krauss, P.
Quantifying and maximizing the information flux in recurrent neural networks.
preprint: arxiv.org/abs/2301.12892
Peer-reviewed Journal Articles
2023
Stoewer, P., Schilling, A., Maier, A., & Krauss, P.
Neural Network based Formation of Cognitive Maps of Semantic Spaces and the Putative Emergence of Abstract Concepts.
Scientific Reports
doi.org/10.1038/s41598-023-30307-6
2022
Metzner, C., Schilling, A., Traxdorf, M., Tziridis, K., Schulze, H. & Krauss, P. (2022).
Classification at the Accuracy Limit -- Facing the Problem of Data Ambiguity.
Scientific Reports
doi.org/10.1038/s41598-022-26498-z
Garibyan, A., Schilling, A., Boehm, C., Zankl, A., & Krauss, P. (2022).
Neural Correlates of Linguistic Collocations During Continuous Speech Perception.
Frontiers in Psychology
doi.org/10.3389/fpsyg.2022.1076339
Schillng, A. & Krauss, P. (2022).
Tinnitus is associated with improved cognitive performance and speech perception -- Can stochastic resonance explain?
Frontiers in Aging Neuroscience
doi.org/10.3389/fnagi.2022.1073149
Stoewer, P., Schlieker, C., Schilling, A., Metzner, C., Maier, A., & Krauss, P. (2022).
Neural Network based Successor Representations to form Cognitive Maps of Space and Language.
Scientific Reports
doi.org/10.1038/s41598-022-14916-1
Schilling, A., Gerum, R., Zankl, A., Metzner, C., Maier. A., & Krauss, P. (2022).
Intrinsic noise improves speech recognition in a computational model of the auditory pathway.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2022.908330
Metzner, C. & Krauss, P. (2022).
Dynamics and Information Import in Recurrent Neural Networks.
Frontiers in Computational Neuroscience
doi.org/10.3389/fncom.2022.876315
Maier, A., Köstler, H., Heisig, M., Krauss, P. & Yang, S.H. (2022).
Known Operator Learning and Hybrid Machine Learning in Medical Imaging -- A Review of the Past, the Present, and the Future
Progress in Biomedical Engineering
https://iopscience.iop.org/article/10.1088/2516-1091/ac5b13/meta
Tziridis, K., Brunner, S., Schilling, A., Krauss, P. & Schulze, H. (2022).
Spectrally Matched Near-Threshold Noise for Subjective Tinnitus Loudness Attenuation Based on Stochastic Resonance.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2022.831581
Boensel, F., Krauss, P., Metzner, C. & Yamakou, M. (2022).
Control of noise-induced coherent oscillations in three-neuron motifs.
Cognitive Neurodynamics
doi.org/10.1007/s11571-021-09770-2
2021
Krauss, P., Metzner, C., Joshi, N., Schulze, H., Traxdorf, M., Maier, A. & Schilling, A. (2021).
Analysis and Visualization of Sleep Stages based on Deep Neural Networks.
Neurobiology of Sleep and Circadian Rhythms
doi.org/10.1016/j.nbscr.2021.100064
Krauss, P. and Tziridis, K. (2021).
Simulated transient hearing loss improves auditory sensitivity.
Scientific Reports
doi.org/10.1038/s41598-021-94429-5
Schilling, A., Tomasello, R., Henningsen-Schomers, M.R., Zankl, A., Surendra, K., Haller, M., Karl, V., Uhrig, P., Maier, A. & Krauss, P. (2021).
Analysis of continuous neuronal activity evoked by natural speech with computational corpus linguistics methods.
Language, Cognition and Neuroscience
doi.org/10.1080/23273798.2020.1803375
Metzner, C., Schilling, A., Traxdorf, M., Schulze, H. & Krauss, P. (2021).
Sleep as a random walk – Superstatistical analysis of EEG data across sleep stages.
Communications Biology
doi.org/10.1038/s42003-021-02912-6
Schilling, A., Metzner, C., Gerum, R., Maier, A., & Krauss, P. (2021).
Quantifying the separability of data classes in neural networks.
Neural Networks
doi.org/10.1016/j.neunet.2021.03.035
Yang, Z., Schilling, A., Maier, A. & Krauss, P. (2021).
Neural Networks with Fixed Binary Random Projections Improve Accuracy in Classifying Noisy Data.
Proceedings, German Workshop on Medical Image Computing, Regensburg, March 7-9, 2021
dx.doi.org/10.1007/978-3-658-33198-6_51
Schilling, A., Tziridis, K., Schulze, H. & Krauss, P. (2021).
The Stochastic Resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition.
Progress in Brain Research
doi.org/10.1016/bs.pbr.2021.01.025
Jeschke, M., Happel, M.F.K., Tziridis, K., Krauss, P., Schilling, A., Schulze, H. & Ohl, F.W. (2021).
Acute and long-term circuit-level effects in the auditory cortex after sound trauma.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2020.598406
Tziridis, K., Forster, J., Buchheidt-Doerfler, I., Krauss, P., Schilling, A., Wendler, O., Sterna, E. & Schulze, H. (2021).
Tinnitus development is associated with synaptopathy of inner hair cells in Mongolian gerbils.
European Journal of Neuroscience
doi.org/10.1111/ejn.15334
2020
Krauss, P. & Maier, A. (2020).
Will we ever have conscious Machines?
Frontiers in Computational Neuroscience
doi.org/10.3389/fncom.2020.556544
Gerum, R., Erpenbeck, A., Krauss, P. & Schilling, A. (2020).
Sparsity through evolutionary pruning prevents neuronal networks from overfitting.
Neural Networks
doi.org/10.1016/j.neunet.2020.05.007
Knipper, M., van Dijk, P., Schulze, H., Mazurek, B., Krauss, P., Scheper, V., Warnecke, A., Schlee, W., Schwabe, K., Singer, W., Braun, C., Delano, P.H., Fallgatter, A.J., Ehlis, A.-C., Searchfield, G.D., Munk, M.H.J., Baguley, D.M. & Rüttiger, L. (2020).
The neural bases of tinnitus: Lessons from deafness and cochlear implants
Journal of Neuroscience
doi.org/10.1523/JNEUROSCI.1314-19.2020
Schilling, A., Krauss, P., Hannemann, R., Schulze, H. & Tziridis, K. (2020).
Reducing tinnitus intensity: Pilot study to attenuate tonal tinnitus using individually spectrally optimized near-threshold noise.
HNO
doi.org/10.1007/s00106-020-00963-5
2019
Krauss, P., Prebeck, K., Schilling, A. & Metzner, C. (2019).
'Recurrence Resonance' in three-neuron motifs.
Frontiers in Computational Neuroscience
doi.org/10.3389/fncom.2019.00064
Krauss, P., Schuster, M., Dietrich, V., Schilling, A, Schulze, H. & Metzner, C. (2019).
Weight statistics controls dynamics in recurrent neural networks.
PloS one
doi.org/10.1371/journal.pone.0214541
Krauss, P., Zankl, A., Schilling, A., Schulze, H. & Metzner, C. (2019).
Analysis of structure and dynamics in three-neuron motifs.
Frontiers in Computational Neuroscience
doi.org/10.3389/fncom.2019.00005
Krauss, P., Schilling, A., Tziridis, K. & Schulze, H. (2019).
Models of tinnitus development. From cochlea to cortex.
HNO Journal
doi.org/10.1007/s00106-019-0612-z
Traxdorf, M., Krauss, P., Schilling, A., Schulze, H. & Tziridis, K. (2019).
Microstructure of cortical activity during sleep reflects respiratory events and state of daytime vigilance.
Somnology
link.springer.com/article/10.1007/s11818-019-0201-0
Dierich, M., Hartmann, S., Dietrich, N., Moeser, P., Brede, F., Johnson Chacko, L., Tziridis, K., Schilling, A., Krauss, P., Hessler, S., Karch, S., Schrott-Fischer, A., Blumer, M., Birchmeier, C., Oliver, D., Moser, T., Schulze, H., Alzheimer, C., Leitner, M. & Huth, T. (2019).
β-secretase BACE1 is required for normal cochlear function.
Journal of Neuroscience
doi.org/10.1523/JNEUROSCI.0028-19.2019
Gerum, R., Rahlfs, H., Streb, M., Krauss, P., Grimm, J., Metzner, C., Tziridis, K., Günther, M., Schulze, H., Kellermann, W. & Schilling, A. (2019).
Open(G)PIAS: An open source solution for the construction of a high-precision Acoustic-Startle-Response (ASR) setup for tinnitus screening and threshold estimation in rodents.
Frontiers in Behavioral Neuroscience
doi.org/10.3389/fnbeh.2019.00140
Schilling, A, Gerum, R., Krauss, P., Metzner, C., Tziridis, K. & Schulze, H. (2019).
Objective estimation of sensory thresholds based on neurophysiological parameters.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2019.00481
2018
Krauss, P., Tziridis, K., Schilling, A. & Schulze, H. (2018).
Cross-modal stochastic resonance as a universal principle to enhance sensory processing.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2018.00578
Krauss, P., Schilling, A., Bauer, J., Tziridis, K., Metzner, C., Schulze, H. & Traxdorf, M. (2018).
Analysis of multichannel EEG patterns during human sleep: a novel approach.
Frontiers in Human Neuroscience
doi.org/10.3389/fnhum.2018.00121
Krauss, P., Metzner, C., Schilling, A., Tziridis, K., Traxdorf M., Wollbrink, A., Rampp, S., Pantev, C., & Schulze, H. (2018).
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns.
Scientific Reports
www.nature.com/articles/s41598-018-23765-w
Metzner, C., Lange, J., Krauss, P., Wunderling, N., Übelacker, J., Martin, F. & Fabry, B. (2018).
Pressure-driven collective growth mechanism of planar cell colonies.
Journal of Physics D: Applied Physics
iopscience.iop.org/article/10.1088/1361-6463/aace4c/meta
2017
Krauss, P., Metzner, C., Schilling, A., Schütz, C., Tziridis, K., Fabry, B., & Schulze, H. (2017).
Adaptive stochastic resonance for unknown and variable input signals.
Scientific Reports
www.nature.com/articles/s41598-017-02644-w
Krauss, P., Schulze, H., & Metzner, C. (2017).
A chemical reaction network to generate random, power-law distributed time intervals.
Artificial Life
Schilling, A., Krauss, P., Gerum, R., Metzner, C., Tziridis, K., & Schulze, H. (2017).
A new statistical approach for the evaluation of gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment.
Frontiers in Behavioral Neuroscience
doi.org/10.3389/fnbeh.2017.00198
Gollnast, D., Tziridis, K., Krauss, P., Schilling, A., Hoppe, U., & Schulze, H. (2017).
Analysis of audiometric differences of patients with and without tinnitus in a large clinical database.
Frontiers in Neurology
doi.org/10.3389/fneur.2017.00031
2016
Krauss, P., Tziridis, K., Metzner, C., Schilling, A., Hoppe, U., & Schulze, H. (2016).
Stochastic resonance controlled upregulation of internal noise after hearing loss as a putative cause of tinnitus-related neuronal hyperactivity.
Frontiers in Neuroscience
doi.org/10.3389/fnins.2016.00597
Krauss, P., Tziridis, K., Buerbank, S., Schilling, A., & Schulze, H. (2016).
Therapeutic Value of Ginkgo biloba Extract Egb 761 in an Animal Model (Meriones unguiculatus) forNoise Trauma Induced Hearing Loss and Tinnitus.
PLoS one
doi.org/10.1371/journal.pone.0157574
2013
Lang, N. R., Münster, S., Metzner, C., Krauss, P., Schürmann, S., Lange, J., & Fabry, B. (2013).
Estimating the 3D pore size distribution of biopolymer networks from directionally biased data.
Biophysical Journal
doi.org/10.1016/j.bpj.2013.09.038
2012
Krauss, P., Metzner, C., Lange, J., Lang, N., & Fabry, B. (2012).
Parameter-free binarization and skeletonization of fiber networks from confocal image stacks.
PLoS one
doi.org/10.1371/journal.pone.0036575
Preprints
2023
Surendra, K., Schilling, A., Stoewer, P. Maier, A., & Krauss, P.
Word class representations spontaneously emerge in a deep neural network trained on next word prediction.
arXiv: 2302.07588
arxiv.org/abs/2302.07588
Metzner, C., Schilling, A., Traxdorf, M., Schulze, H., Tziridis, K., & Krauss, P.
Extracting continuous sleep depth from EEG data without machine learning.
arXiv:2301.06755
arxiv.org/abs/2301.06755
Metzner, C., Yamakou, M., Voelkl, D., Schilling, A., & Krauss, P.
Quantifying and maximizing the information flux in recurrent neural networks.
arXiv: 2301.12892
arxiv.org/abs/2301.12892
2022
Schilling, A., Tziridis, K., Schulze, H., & Krauss, P. (2022).
Behavioral assessment of Zwicker tone percepts in rodents.
bioRxiv
doi.org/10.1101/2022.12.22.521554
Stoewer, P., Schilling, A., Maier, A., & Krauss, P. (2022).
Neural Network based Formation of Cognitive Maps of Semantic Spaces and the Emergence of Abstract Concepts.
arXiv:2210.16062
arxiv.org/abs/2210.16062
Metzner, C., Schilling, A., Traxdorf, M., Tziridis, K., Schulze, H. & Krauss, P. (2022).
Classification at the Accuracy Limit -- Facing the Problem of Data Ambiguity.
arXiv:2206.01922
arxiv.org/abs/2206.01922
Schilling, A., Gerum, R., Boehm, C., Rasheed, J., Metzner, C., Maier, A., Reindl, C., Hamer, H., & Krauss, P. (2022).
Deep learning based decoding of local field potentials.
bioRxiv
doi.org/10.1101/2022.10.14.512209
Schilling, A., Sedley, W., Gerum, R., Metzner, C., Tziridis, K., Maier, A., Schulze, H., Zeng, F.-G., Friston, K.J., & Krauss, P. (2022).
Predictive coding and stochastic resonance as fundamental principles of auditory perception.
arXiv:2204.03354
arxiv.org/abs/2204.03354
Garibyan, A., Schilling, A., Boehm, C., Zankl, A., & Krauss, P. (2022).
Neural Correlates of Linguistic Collocations During Continuous Speech Perception.
bioRxiv
doi.org/10.1101/2022.03.25.485771
Stoewer, P., Schlieker, C., Schilling, A., Metzner, C., Maier, A., & Krauss, P. (2022).
Neural Network based Successor Representation of Space and Language
arXiv:2202.11190
arxiv.org/abs/2202.11190
2021
Metzner, C. & Krauss, P. (2021).
Dynamical Phases and Resonance Phenomena in Information-Processing Recurrent Neural Networks.
arXiv:2108.02545
arxiv.org/abs/2108.02545
Metzner, C., Schilling, A., Traxdorf, M., Schulze, H. & Krauss, P. (2021).
Sleep as a random walk – Superstatistical analysis of EEG data across sleep stages.
bioRxiv
doi.org/10.1101/2021.06.25.449874
Boensel, F., Krauss, P., Metzner, C. & Yamakou, M. (2021).
Control of noise-induced coherent oscillations in time-delayed neural motifs.
arXiv:2106.11361
Maier, A., Köstler, H., Heisig, M., Krauss, P. & Yang, S.H. (2021).
Known Operator Learning and Hybrid Machine Learning in Medical Imaging -- A Review of the Past, the Present, and the Future
arXiv:2108.04543
arxiv.org/abs/2108.04543
2020
Krauss, P. & Schilling, A. (2020).
Towards a Cognitive Computational Neuroscience of Auditory Phantom Perceptions.
arXiv:2010.01914
Krauss, P. & Maier, A. (2020).
Will we ever have conscious Machines?
arXiv:2003.14132
Krauss, P., Metzner, C., Joshi, N., Schulze, H., Traxdorf, M., Maier, A. & Schilling, A. (2020).
Analysis and Visualization of Sleep Stages based on Deep Neural Networks.
bioRxiv
https://doi.org/10.1101/2020.06.25.170464
Krauss, P. (2020).
Improved pure tone sensitivity after simulated hearing loss
bioRxiv
https://doi.org/10.1101/2020.05.29.124321
Schilling, A., Tomasello, R., Henningsen-Schomers, M.R., Zankl, A., Surendra, K., Haller, M., Karl, V., Uhrig, P., Maier, A. & Krauss, P. (2020).
Analysis of continuous neuronal activity evoked by natural speech with computational corpus linguistics methods.
bioRxiv
https://doi.org/10.1101/2020.04.21.052720
Schilling, A., Tziridis, K., Schulze, H. & Krauss, P. (2020).
The Stochastic Resonance model of auditory perception:
A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition.
bioRxiv
https://doi.org/10.1101/2020.03.27.011163
Schilling, A., Gerum, R., Zankl, A., Metzner, C., Maier, A. & Krauss, P. (2020).
Intrinsic noise improves speech recognition in a computational model of the auditory pathway.
bioRxiv
https://doi.org/10.1101/2020.03.16.993725
Jeschke, M., Happel, M.F.K., Tziridis, K., Krauss, P., Schilling, A., Schulze, H., & Ohl, F.W. (2020).
Acute and long-term circuit-level effects in the auditory cortex after sound trauma.
bioRxiv
https://doi.org/10.1101/2020.03.06.980730
2019
Gerum, R., Erpenbeck, A., Krauss, P., & Schilling, A. (2019).
Sparsity through evolutionary pruning prevents neuronal networks from overfitting.
arXiv:1911.10988
2018
Krauss, P., Prebeck, K., Schilling, A., & Metzner, C. (2018).
Stochastic Resonance in three-neuron motifs.
arXiv:1811.12091
Krauss, P., Schuster, M., Dietrich, V., Schilling, A, Schulze, H & Metzner, C. (2018).
Weight statistics controls dynamics in recurrent neural networks.
bioRxiv
https://doi.org/10.1101/475319
Krauss, P., Zankl, A., Schilling, A., Schulze, H. & Metzner, C. (2018)
Analysis of structure and dynamics in three-neuron motifs.
arXiv:1811.05225
Schilling, A., Metzner, C., Rietsch, J., Gerum, R., Schulze, H., & Krauss, P. (2018).
How deep is deep enough? - Quantifying class separability in the hidden layers of deep neural networks.
arXiv:1811.01753
Schilling, A, Gerum, R., Krauss, P., Metzner, C., Tziridis, K. & Schulze, H. (2018).
Objective estimation of sensory thresholds based on neurophysiological parameters.
arXiv:1811.02335
Gerum, R., Rahlfs, H., Streb, M., Krauss, P., Metzner, C., Tziridis, K., Günther, M., Schulze, H., Kellermann, W. & Schilling, A. (2018).
Open(G)PIAS: An open source solution for the construction of a high-precision Acoustic-Startle-Response (ASR) setup for tinnitus screening and threshold estimation in rodents.
arXiv:1804.09667
Forster, J., Wendler, O., Buchheidt-Doerfler, I., Krauss, P., Schilling, A., Sterna, E., Schulze, H., & Tziridis, K. (2018).
Tinnitus development is associated with synaptopathy of inner hair cells in Mongolian gerbils.
bioRxiv
https://doi.org/10.1101/304576
2016
Krauss, P., Metzner, C., Schilling, A., Tziridis, K., Traxdorf M., & Schulze, H. (2016).
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns.
arXiv:1611.07677
Krauss, P., Tziridis, K., Schilling, A., Metzner, C., & Schulze, H. (2016).
Stochastic resonance controlled upregulation of internal noise after hearing loss as a putativecorrelate of tinnitus-related neuronal hyperactivity.
arXiv:1603.04721
2015
Krauss, P., Metzner, C., Tziridis, K., & Schulze, H. (2015).
Adaptive stochastic resonance based on output autocorrelations.
arXiv:1504.05032
2011
Krauss, P., Metzner, C., Lange, J., Lang, N., & Fabry, B. (2011).
Reconstructing fiber networks from confocal image stacks.
arXiv:1111.3861
Metzner, C., Krauss, P., & Fabry, B. (2011).
Poresizes in random line networks.
arXiv:1110.1803
Videos
Werden wir jemals bewusste Maschinen haben?
Will we ever have consciousness in the machine?
Popular Science Articles
Krauss, P. & Maier, A.
La mente que hay en la máquina.
Mente y Cerebro (114) 2022
www.investigacionyciencia.es/revistas/mente-y-cerebro/prevenir-la-psicosis-858/la-mente-que-hay-en-la-mquina-20983
Krauss, P. & Maier, A.
Titelthema: Der Geist in der Maschine.
Spektrum der Wissenschaft 07_2021
www.spektrum.de/magazin/bewusste-ki-der-geist-in-der-maschine/1875787
Krauss, P. & Maier, A.
Der Geist in der Maschine.
Gehirn und Geist 11_2021
www.spektrum.de/magazin/bewusste-ki-der-geist-in-der-maschine/1875787
Krauss, P. & Maier, A.
Der Geist in der Maschine.
Spektrum der Wissenschaft Spezial: Physik Mathematik Technik 03_2021
www.spektrum.de/magazin/bewusste-ki-der-geist-in-der-maschine/1875787
Krauss, P. & Maier, A.
Y a-t-il un esprit dans la machine ?
Cerveau et Psycho 12_2021
https://www.cerveauetpsycho.fr/sd/technologie/reseaux-de-neurones-y-a-t-il-un-esprit-dans-la-machine-23038.php
Krauss, P. & Schulze, H.
Das Fiepen im Rauschen. Ein innovatives Modell erklärt, wie die quälenden Phantomgeräusche entstehen – und weist neue Behandlungswege.
Gehirn und Geist 08_2019.
www.spektrum.de/pdf/66-71-gug-08-2019-pdf/1654364
Krauss, P. & Schulze, H.
Un pitido contra el murmullo. Un innovador modelo explica cómo se instaura el ruido fantasma.
Mente y Cerebro 11_2019.
Krauss, P., Schilling, A., Tziridis, K. & Schulze, H.
“Singende Ohren” verstehen lernen.
Ärzte Woche Nr. 24, 13.06.2019