Course Information:
Course Information:
For prerequisites, evaluation, suggested materials and other policies, please check the syllabus.
For prerequisites, evaluation, suggested materials and other policies, please check the syllabus.
Lec 1 - Introduction
Lec 2 - Convex Sets
Lec 3 - Convex Functions
Lec 4 - Unconstrained Optimization
Lec 5 - Gradient Descent, Convergence Analysis
Lec 6 - Accelerated First-order Methods
Lec 7 - Newton's method, Quasi-Newton methods
Lec 8 - Subgradient Algorithms
Lec 9 - Proximal Algorithms
Lec 10- Constrained Geometry
Lec 11- Karush-Kuhn-Tucker (KKT) Conditions
Lec 12- Lagrange Duality
Lec 13- Fenchel Duality
Lec 14- Constrained Algorithm Basics
Lec 15- ADMM and Saddle Points
Lec 16- Distributed
Lec 17- Decentralized
Lec 18- Convex Relaxation
Lec 19- Stochastic Gradient Algorithm
Lec 20- Minimax