Find complete publication list on PubMed
PREPRINTS
Juvale P., Mudd, D.B., N. Shree, S.L. Pallas (2023) Multiple postsynaptic protein levels in adult superior colliculus are unaffected by dark rearing from birth.
biorxiv https://www.biorxiv.org/content/10.1101/2022.10.06.511220v2
JOURNAL ARTICLES
Márquez, N.I., A. Deichler, P.F. Fernández‐Aburto, I. Perales, J.C. Letelier, G.J. Marín, J. Mpodozis, S.L. Pallas (2024) The Chilean brush tailed mouse (Octodon degus): a diurnal precocial rodent as a new model to study visual receptive field properties of superior colliculus neurons. J. Neurophysiol. doi: http://doi.10.1152/jn.00128.2024
Mudd, D.B., T.S. Balmer, S.Y. Kim, N. Machhour, S.L. Pallas (2019) TrkB activation during a critical period mimics the protective effects of early visual experience on the stability of receptive fields in adult superior colliculus. J. Neurosci.39: 4475-4488. http://www.jneurosci.org/content/39/23/4475.
Cheng, Q., M.D. Graves, S.L. Pallas (2019) Dynamic alterations of retinal EphA5 expression in retinocollicular map plasticity. Devel. Neurobiol. 79:252-267. https://onlinelibrary.wiley.com/doi/10.1002/dneu.22675 See our cover image at https://onlinelibrary.wiley.com/doi/10.1002/dneu.22683.
Balmer, TS, SL Pallas (2015) Visual experience prevents dysregulation of GABAB receptor-dependent short-term depression in adult superior colliculus. J. Neurophysiol.113: 2049-2061. http://jn.physiology.org/content/113/7/2049
Balmer, T.S., S.L. Pallas (2015; epub 2013) Refinement but not maintenance of receptive fields in both superior colliculus and visual cortex is independent of visual experience. Cerebral Cortex: 25:904-917. http://cercor.oxfordjournals.org/content/25/4/904
Tadesse, T., Q. Cheng, M. Xu, D.J. Baro, L.J. Young, S.L. Pallas (2013) Regulation of ephrin-A expression in compressed retinocollicular maps. Devel. Neurobiol. 73:274-296. http://onlinelibrary.wiley.com/doi/10.1002/dneu.22059/full
Mao, Y.-T, S.L. Pallas (2012) Compromise of auditory cortical tuning and topography after cross-modal invasion by visual inputs. J. Neurosci. 32:10338-10351. http://www.jneurosci.org/content/32/30/10338.long
Mao, Y.-T, T.-M. Hua, S.L. Pallas (2011) Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas. J. Neurophysiol. 105:1558-1573. http://jn.physiology.org/content/105/4/1558.long
Carrasco, M.M., Y.-T. Mao, T. Balmer, S.L. Pallas (2011) Inhibitory plasticity underlies visual deprivation-induced loss of receptive field refinement in adulthood. Eur. J. Neurosci. 33:58-68. http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2010.07478.x/full
Razak, K.A., S.L. Pallas (2007) Inhibitory plasticity facilitates recovery of stimulus velocity tuning in the superior colliculus after chronic NMDA receptor blockade. J. Neurosci. 27: 7275-7283. http://www.jneurosci.org/content/27/27/7275.long
Carrasco, M.M., K.A. Razak, S.L. Pallas (2005) Visual experience is necessary for maintenance but not development of refined retinotopic maps in superior colliculus. J. Neurophysiol. 94:1962-1970. http://jn.physiology.org/content/94/3/1962.long
Razak, K.A., L. Huang, S.L. Pallas (2003) NMDA receptor blockade in the superior colliculus increases receptive field size without altering velocity and size tuning. J. Neurophysiol. 90:110-119. http://jn.physiology.org/content/90/1/110.long
Huang, L., S.L. Pallas (2001) NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression. J. Neurophysiol. 86:1179-1194. http://jn.physiology.org/content/86/3/1179.long
Pallas, S.L., T. Littman, D.R. Moore (1999) Cross–modal reorganization of callosal connectivity without altering thalamocortical projections. Proc. Natl. Acad. Sci. USA 96: 8751-8756. https://doi.org/10.1073/pnas.96.15.8751
Gao, W.-J., S.L. Pallas (1999) Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. J. Neurosci. 19:7940-7950. http://www.jneurosci.org/content/19/18/7940.long
BOOKS
Pallas, S.L. (editor) Developmental Plasticity of Inhibitory Circuitry. Springer-Verlag, New York, 2010. http://www.springer.com/fr/book/9781441912428
INVITED REVIEWS
Pallas, S.L. (2017) The impact of ecological niche on adaptive flexibility of sensory circuitry. In “From ecology to brain development: Bridging separate evolutionary paradigms” Eds: Francisco Aboitiz, Miguel Concha, Christian Gonzalez-Billault, Jorge Mpodozis. Frontiers in Neuroscience 11:344. https://dx.doi.org/10.3389/fnins.2017.00344
Pallas, S.L., Y.-T. Mao (2012) The evolution of multisensory neocortex. In: Barry E. Stein (editor) New Handbook of Multisensory Processes. MIT Press Cambridge, MA
Kral, A. and S.L. Pallas (2011) Development of the auditory cortex. In: J.A. Winer and C.E. Schreiner (eds.) The Auditory Cortex. Springer, New York. http://link.springer.com/chapter/10.1007/978-1-4419-0074-6_21#page-1
Pallas, S.L. (2007) Compensatory innervation in development and evolution. In: J. Kaas (ed.), Evolution of Nervous Systems, Vol. 1, G.F. Striedter and J.L.R. Rubenstein (eds.): Theories, Development, and Invertebrates, pp 153-168. Elsevier Academic Press, Amsterdam. http://www2.gsu.edu/~bioslp/pdfs/Evo_Devo_Review.pdf