【專題講座】
簡立峰
(前 Google 台灣區董事
總經理)
【演講題目】
AI 從問答到代理:
人機協作新篇章
AI from Answering to Acting:
The New Wave of Human-AI Collaboration
隨著大型語言模型(LLM)的能力從簡單的「問答」躍升為複雜的 「AI Agents」代理,人類與人工智慧的關係正迎來一次重大的典範轉移。本次演講將深入探討這股「從 Answering 到 Acting」的新浪潮及其在四大核心領域帶來的深遠衝擊。個人與共創:人類如何從單純的用戶轉變為與 AI 共創、共學、共生的協作者。網路與生態: Agentic Web(代理網路)的可能形成,以及傳統網路產業面臨的典範轉移。企業與工作流: 企業工作模式的根本性轉變,加速虛實共存的職場人機協作。
教育與技能重塑: 探討 AI 對資淺工作者的衝擊,以及教育體系如何加速擁抱 AI 賦能的新教學模式。
我們將探討如何理解和掌握這股變革,為個人和組織的新篇章做好準備。
The capabilities of Large Language Models (LLMs) are rapidly advancing from simple "answering" to complex actions via AI Agents. This shift marks a profound paradigm change in the relationship between humans and artificial intelligence. This talk will delve into this "Answering to Acting" wave and its far-reaching impact across four core domains:Individual & Co-creation: How humans transition from mere users to collaborators, learning to co-create, co-learn, and co-exist with AI. Web & Ecosystem: The potential formation of the Agentic Web and the resulting paradigm shift facing the traditional internet industry. Enterprise & Workflow: The fundamental transformation of corporate work models, accelerating human-machine collaboration and the co-existence of virtual and physical operations in the workplace. Education & Skill Reshaping: Discussing the impact of AI on junior employees and the imperative for the education system to rapidly embrace AI-enabled teaching and learning models.
We will explore how to understand and navigate this transformation, preparing individuals and organizations for this new chapter.
【上午場】
專題演講(一)
AI 人機協作時代新契機
【主講人】蘇木春
國立中央大學
資訊工程學系
【講 題】
AI 人機協作時代的
機會與挑戰
Opportunities and Challenges in the Era of Human–AI Collaboration
【中文摘要】
近年來,日益強大的AI 已逐漸成為我們的生活和工作的夥伴,而AI Agent 時代的來臨甚至會讓 AI 從助理成為我們的同事。人機協作帶來了好處與機會,但隨之而來的也是挑戰與風險。理想「人機協作」模式是什麼?我們該如何面對人機協作的時代來臨呢?
【英文摘要】
In recent years, increasingly powerful AI systems have gradually become our partners in both life and work. With the emergence of the AI Agent era, AI is evolving from an assistant to a true colleague. Human–AI collaboration brings numerous benefits and opportunities, yet it also introduces new challenges and risks.What does the ideal model of “human–AI collaboration” look like? And how should we respond to the arrival of this new era?
【主講人】詹忠翰
國立中央大學
地球科學學系
【講 題】
邁向台灣韌性社區:
運用人工智慧推動
地震災害與風險研究
AI in the Epicenter: How Machine Learning is Reshaping Earthquake
Resilience
【中文摘要】
當人工智慧正徹底革新科學與工程領域的各個層面時,地震減災與風險管理等領域亦不例外。本演講將探討最先進的機器學習技術——從深度神經網路到可解釋人工智慧(Explainable AI)。首先介紹如何利用如 XGBoost 等模型,建立先進的地震動預測模型,以提升地震危害圖的準確性與可解釋性。接著,介紹「台灣變壓器地震預警模型」,該模型乃基於深度學習的地震預警系統,能夠透過辨析地震波形與具物理意義的特徵,快速而準確地預測地震震度。最後,我們展示如何運用卷積神經網路(如 Mask R-CNN)自動辨識衛星影像中的建築物輪廓,進行大規模建物資料提取,為都市地震風險評估提供關鍵的建物資料。透過這些實例,與會者將能了解人工智慧如何協助科學家、工程師、政府與社會共同打造一個更安全、更具韌性的未來,以面對地震災害的挑戰。
【英文摘要】
In an age when artificial intelligence is revolutionizing every facet of engineering, seismic hazard mitigation is no exception. This talk explores how cutting-edge machine learning models—ranging from deep neural networks to explainable AI—are transforming how we predict, assess, and respond to earthquakes in Taiwan and beyond. We begin with the use of models like XGBoost to develop advanced ground motion prediction equations (GMPEs), improving both the accuracy and interpretability of seismic hazard maps. We then introduce the Taiwan Transformer Shaking Alert Model (TT-SAM), a deep learning–based early warning system that delivers rapid and precise shaking forecasts using real-time seismic waveforms and physically meaningful features. Finally, we showcase how convolutional neural networks such as Mask R-CNN enable automated, large-scale building detection from satellite imagery—providing crucial exposure data for urban seismic risk assessment. Through these case studies, attendees will see how AI-powered innovations can help engineers, governments, and communities build a safer, more resilient future in the face of seismic threats.
【主講人】陳健章
國立中央大學
生醫科學與
工程學系
【講 題】
輕量級幾何生成模型
在生物特徵中的人機
協作案例分享
【中文摘要】
現代深度學習模型發展之瓶頸,將可能面臨高計算量帶來的能源消耗、高單位的資訊儲存成本、高度複雜且龐大的模型結構,以及難以取得的無汙染巨量訓練資料。因此低成本結構且僅依賴少量訓練集的人工智慧模型將有機會提供各類型使用者,成本較低廉的硬體進入門檻與穩定而成熟的執行方案,並且能適合於如醫療院所、製程機台配置等的封閉型或邊緣端的應用場景。因此本次的演說將在藉由微分幾何以及量子力學所提供的獨特數學架構下,分享本實驗室設計出的一系列輕量型拓樸學習模型,並在多種不同應用領域與當代各類型的人機介面環境中執行協作與生成任務。
【英文摘要】
The development of modern deep learning models faces critical bottlenecks, including the significant energy consumption associated with high computational loads, the substantial cost of large-scale data storage, increasingly complex and massive model architectures, and the scarcity of large-scale, adversarial-free training datasets. Consequently, low-cost model architectures that rely on limited training data offer the potential to lower the hardware entry barriers and provide robust, mature deployment solutions for a broad spectrum of users. Such models are well-suited for closed or edge-computing environments, including medical institutions and industrial fabrication systems. This presentation will introduce a series of lightweight topological learning models designed by our laboratory, built upon the unique mathematical frameworks of differential geometry and quantum mechanics. These models have been applied across diverse domains to support collaborative and generative tasks within contemporary human–machine interface environments.
【主講人】陳翔傑
國立中央大學
機械工程學系
【講 題】
以生成式 AI 增進
人機共存與互動的
安全
Charting a Safer Future for Human-Robot Coexistence
with Generative AI
【中文摘要】
1.破題:過去與未來,從機器作業、人機協作,到人機共存。
2.現階段挑戰:當機器人走出安全圍籬,AI可否預見並化解危險?
3.傳統的機制:被動式安全的核心問題,僵化且被動。
4.生成式AI的解方:不僅是創造,而是預測與推理。
5.核心技術:人類意圖。
6.動態路徑規劃與及早反應。
7.互動與溝通。
8.應用案例。
【英文摘要】
1.Introduction: The evolution from machine operation and human-robot collaboration to true human-robot coexistence.
2.The Current Challenge: As robots step out of their safety cages, can AI anticipate and mitigate potential risks?
3.Traditional Mechanisms: The core problem of reactive safety- being rigid and passive.
4.The Generative AI Solution: Moving beyond content creation to embrace prediction and reasoning.
5.Core Technology I: Human Intent Prediction.
6.Core Technology II: Dynamic Path Planning and Proactive Response.
7.Core Technology III: Interaction and Communication.
8.Application Case Study.
【上午場】
專題演講(二)
AI 與人本
【主講人】楊鎮華
國立中央大學
資訊工程學系
【講 題】
以人為本的永續AI
Human-centered Sustainable AI
【中文摘要】
隨著人工智慧以驚人的速度發展,我們面臨著一項緊迫的挑戰:確保這些強大的新工具能同時造福人類與地球 。自 2017 年 Transformer 技術突破以及 2022 年 ChatGPT 普及以來,大型語言模型和新興的「代理型 AI」系統(agentic AI systems)正在重塑所有產業,卻也帶來了新的技術與倫理風險 。
本次演講主張一個整全性框架,將尖端創新與明確的永續目標聯繫起來,例如減少碳足跡、確保 AI 利益的公平取用等 。此「以人為本」的觀點建立在可信賴 AI 的七個核心面向之上:人的自主性與監督、技術穩健性、隱私與數據治理、透明度、多元與非歧視、社會與環境福祉、問責制。
我們可以透過「可解釋性 AI」(XAI)技術、偏見偵測工具及共融設計等實用方法來實現這些目標,並將佐以教育、醫療保健和智慧電網管理等領域的真實案例說明 。透過聚焦於公平性與可解釋性,我們能將 AI「從冰冷的科技走向溫暖的人性」,確保自動化決策過程是可理解、可質疑,並有助於人類的自主 。
AI 在我們的氣候危機中扮演著雙重角色,它既是問題的成因之一,也可能是緩解問題的潛在功臣。資訊與通訊技術的能源需求正急遽攀升,預計到2030年將佔全球電力消耗的20%。為了應對這一情況,綠色AI策略至關重要,例如裝置端推論(on-device inference)、使用再生能源的資料中心,以及節制的模型大小。與此同時,AI也為環境問題提供了強大的解決方案,包括精準農業、生物多樣性監測以及救災機器人技術 。
臺灣正透過「未來地球臺北」的「數位時代的永續發展」工作小組做出重要貢獻。該小組集結了學術界、政府和產業界的利害關係人,共同設計解決方案。當前的計畫包括代理人基底的深度研究助理,以及針對負責任 AI 的公眾教育。此外,計畫於 2025年11月在中央研究院舉辦的國際研討會,旨在鞏固區域合作,並使本地的監管框架與全球新興規範接軌 。
歸根究底,智慧不僅僅是運算能力。AI的永續進展取決於我們是否將倫理思辨、社會對話和生態意識融入其整個生命週期。透過將先進工程與在地文化價值相結合,我們可以確保 AI 成為共融與韌性發展的催化劑,而非不平等的驅動因素。我們的目標是為「以人為本的永續 AI」建立一個共同議程,在創新與管理之間取得平衡,將技術突破轉化為促進集體繁榮的力量 。
【英文摘要】
As artificial intelligence advances at a breakneck pace, we face an urgent challenge: aligning these powerful new tools with the well-being of people and the planet. Since the 2017 Transformer breakthrough and the mass adoption of ChatGPT in 2022, systems such as large language models and agentic AI are reshaping every sector. Still, they also introduce new technical and ethical risks.
This presentation argues for a holistic framework that connects cutting-edge innovation to clear sustainability goals, such as reducing carbon footprints and ensuring equitable access to AI's benefits. This human-centered view is built on seven core dimensions of trustworthy AI: human agency and oversight, technical robustness, privacy and data governance, transparency, diversity and non-discrimination, societal and environmental well-being, and accountability.
We can achieve these goals through practical tools, such as explainable AI (XAI) techniques, bias detection tools, and inclusive design, with real-world examples from education, healthcare, and smart grid management. By focusing on fairness and explainability, we can move "from cool technology to warm humanity," ensuring automated decisions are understandable, contestable, and keep people in control.
AI plays a dual role in our climate crisis, both contributing to the problem and potentially mitigating it. The energy demand from information and communications technology is soaring, projected to hit 20% of global electricity use by 2030. To counter this, green AI strategies such as on-device inference, renewable-powered data centers, and disciplined model sizing are essential. At the same time, AI offers powerful environmental solutions, including precision agriculture, biodiversity monitoring, and disaster-response robotics.
Taiwan is making significant contributions through the Future Earth Taipei Working Group on Sustainability in the Digital Age. This group brings together academia, government, and industry to co-design AI solutions. Current projects include agent-based research assistants and public education on responsible AI. Furthermore, international workshops planned at Academia Sinica in November 2025 will help strengthen regional collaboration and align local regulations with global standards.
Ultimately, intelligence is more than just computing power. Sustainable progress depends on embedding ethics, social dialogue, and ecological awareness into every stage of the AI lifecycle. By integrating advanced engineering with culturally grounded values, we can ensure that AI catalyzes inclusive and resilient development, rather than driving inequity. The goal is a shared agenda for human-centered sustainable AI that balances innovation with stewardship, turning technological breakthroughs into a force for our collective flourishing.
【主講人】孫雲平
國立中央大學
哲學研究所
【講 題】
在 AI 時代
重探人才培育:
從知識論的觀點看
人類學習的變與不變
Re-examining Talent Cultivation in the AI Era:
Changes and Constants in Human Learning from an
Epistemological Perspective
【中文摘要】
在人工智慧迅速發展的時代,本文從知識論與存有論的深層視角,重新審視人類學習的本質與人才培育的方向。核心論旨指出:人類的存在最終在於追求自由、理想與意義,而 AI 應被視為人類的延伸工具,而非替代品。其價值不在於取代人類能力,而在於協助人類更接近這些終極目標。
儘管 AI 改變了知識的取得方式與學習形式,人類學習仍根植於兩項不可取代的能力:默會之知與意義建構。前者是透過實踐與直覺所獲得的內隱知識,後者則是將資訊轉化為理解與價值的批判性歷程。
AI 與人類三大存在性追求之間存在張力:在自由面向,AI 提供工具性自由,卻可能造成資訊繭房與思考懶惰,削弱批判性自主;在理想面向,AI 可促進自我實現,但若教育過度追求效率,可能導致人格異化;在意義面向,AI 可協助人類聚焦深層追問,但也可能讓人沉溺於即時快樂,逃避意義建構的掙扎。
因此,人才培育需進行典範轉移:從知識傳授轉向智慧啟迪,從技能訓練轉向整全培育,最終從與 AI 競爭轉向與 AI 共生。教育的使命,是幫助學生在 AI 時代中,成為活出自由、實現理想、創造意義的完整人。
【英文摘要】
In an era of rapid AI development, this paper re-examines the nature of human learning and the direction of talent cultivation through epistemological and ontological perspectives. The central thesis asserts that human existence ultimately pursues freedom, ideality, and meaning. AI should be regarded as an extension of human capability—not a replacement. Its value lies not in substituting human faculties, but in helping us move closer to these existential goals.
Although AI has transformed how knowledge is accessed and learning is conducted, human learning remains rooted in two irreplaceable capacities: tacit knowledge and meaning-making. Tacit knowledge refers to implicit understanding gained through practice and intuition, while meaning-making involves the critical process of transforming information into understanding and value.
【主講人】許雲翔
國立中央大學
法律與政府
研究所
【講 題】
AI 對勞動市場
與就業影響
【中文摘要】
人工智慧是替代、強化還是補充我們的工作,有著不同的論述。人工智慧可取代規格化的工作,就業機會將被替代;但人工智慧也可以改變任務進行方式,強化工作產出;人工智慧對於工作進行也有「互補性」的潛力。而人工智慧對工作的影響,將按公司規模、勞動者教育程度有所差異:大型企業擁有較多資源,資料量也更大,將更能發揮人工智慧創造的競爭優勢;勞動者教育程度愈高,任務自動化所能提升的生產力愈高。另一方面,人工智慧減少初階工作、可規格化任務的需求,行政工作和報表在運用人工智慧後可批次產出,原本從事此類工作的資淺或教育程度較低勞動者,可能需要再培訓以重新學習如何運用人工智慧;但不具備技術層次的體力勞動,如水電焊接因無法被規格,反而使低技術勞動者更容易地進入勞動市場。在「傾向特定技能變遷」(skill biased technological change)的人工智慧趨勢下,具備特定技能的勞工受益,不具備者無法分享技術的經濟效益,政府需要進一步思考再訓練方式,進行「職業轉型」。
【英文摘要】
There are varying discourses regarding whether Artificial Intelligence (AI) substitutes, enhances, or complements our work. AI can replace standardized jobs, leading to the substitution of employment opportunities; however, AI can also alter how tasks are performed, enhancing work output. Furthermore, AI possesses the potential for "complementarity" in work execution. The impact of AI on employment varies according to company size and the educational level of workers. Large enterprises, possessing more resources and greater data volumes, are better positioned to leverage the competitive advantages created by AI. Similarly, the higher a worker's education level, the greater the productivity gains derived from task automation. Conversely, AI reduces the demand for entry-level jobs and standardized tasks. Since administrative work and reporting can be generated in batches through AI application, junior workers or those with lower educational levels who originally performed such tasks may require retraining to learn how to utilize AI. However, manual labor that cannot be standardized—such as plumbing and welding—may actually make it easier for lower-skilled workers to enter the labor market. Under the AI trend of "skill-biased technological change," workers possessing specific skills benefit, while those without them cannot share in the technology's economic benefits. Consequently, the government needs to further consider retraining approaches to facilitate "occupational transition."
【下午場】
專題演講(三)
中大在 AI 應用於
教學之實踐
【主講人】陳攸華
國立中央大學
網路學習所
【講 題】
讓 ChatGPT
成為好幫手
【中文摘要】
ChatGPT(全名為 Chat Generative Pretrained Transformer)是一種具備生成式 AI(Generative AI)特點的工具,它能以驚人的速度回應使用者的需求,因此已經在多個領域展現出無限潛力。然而,若缺乏正確的方法與態度,錯誤使用 ChatGPT 反而可能帶來意想不到的風險與挑戰。這也讓「如何善用 ChatGPT」成為一個值得深入探討的議題。
有鑑於此,本次演講將首先帶領大家認識 ChatGPT 的核心概念,並解釋它為什麼能成為我們不可或缺的好幫手。透過生活中的比喻,幫助大家更清楚地理解 ChatGPT 的角色與價值。接著,我會分享學生實際應用ChatGPT 的經驗案例,以及我與學生在使用過程中所遭遇的慘痛經驗,以作為警惕。
同時,我也會提出一套有系統的步驟,示範如何正確、有效率地使用 ChatGPT,讓它真正發揮最大效益。最後,我將進一步探討 AI 時代下,學生、老師與家長三方應如何合作,共同培養面對人工智慧時所需的態度與能力。簡而言之,我希望藉著這次的演講,不僅讓大家懂得如何與 ChatGPT 共處,更能將它轉化為生活與學習中的好夥伴,迎向人工智慧帶來的全新挑戰與機會。
【英文摘要】
ChatGPT, short for Chat Generative Pretrained Transformer, is a tool characterized by the features of Generative AI. It can respond to users’ needs with remarkable speed and assist in accomplishing a wide variety of tasks, thereby demonstrating tremendous potential across diverse fields. However, the misuse of ChatGPT may bring about unexpected risks and challenges. Accordingly, there is a need to discuss how to use ChatGPT with right methods and attitudes.
In this talk, I will begin by introducing the core concepts of ChatGPT and explaining why it has become an indispensable assistant. Through relatable, real-life analogies, I will help the audience better understand ChatGPT’s role and value. Subsequently, I will share real cases of students using ChatGPT, along with some painful lessons that both my students and I have encountered.
At the same time, I will present a systematic set of steps to demonstrate how ChatGPT can be used correctly and efficiently, ensuring that its potential is fully realized. Finally, I will explore how students, teachers, and parents can collaborate in the age of AI. In short, my hope is that this talk will not only help everyone learn how to coexist with ChatGPT, but also transform it into a trusted partner in both learning and daily life—one that empowers us to embrace the new challenges and opportunities brought by AI.
【主講人】鍾德元
國立中央大學
光電科學與工程學系
【講 題】
新的學習夥伴
AI 助教
【中文摘要】
短影音、自媒體與生成式AI的興起,加上教育制度、政治與社會的快速變遷,正深刻改變學生的學習行為與動機,傳統的授課、作業與考試模式面臨前所未有的挑戰。既有的教學問題並未因此減少,新的問題卻持續湧現,教師與學生之間的期待落差日益擴大。然而,數位工具與AI技術的進步,也為教學創新提供了前所未有的契機。
本報告以大學部EMI必修課《電磁學》為例,探討高等教育現場面臨的典型困境。同時,將展示以大型語言模型(LLM AI)輔助教學的多種應用方式解決部分的高教困境,包括課程內容重構、即時助教互動、課堂活動設計、題目生成與解答與問題回饋等面向。
LLM AI在專業知識的廣度與語言表達上,已具備博士生等級的能力,並兼具高度耐性與高可及性,足以在許多教學任務中取代傳統助教的角色,亦能作為學生的學習夥伴,提供個別化的引導與練習。對教師而言,AI亦可作為高效的教學助手,協助課程設計、教材生成與概念統整,顯著降低教學準備負擔,並提升課堂的互動品質。
然而,教師與學生都需意識到:AI所提供的知識與建議仍需經過人類的批判思考與查證方能採用。建議在使用LLM AI時,同步搭配其他AI工具與正規的資料庫或搜尋引擎進行交叉驗證,以確保資訊的正確性與學術誠信。最後,本報告亦將分享本校「Uedu優學院」的教學平台實驗環境與AI輔助教學實例,作為未來高教場域整合AI助教的參考案例。
【英文摘要】
The rise of short-form videos, self-media, and generative AI—along with the rapid transformation of educational systems, politics, and society—has profoundly reshaped students’ learning behaviors and motivations. Traditional models of lecturing, assignments, and examinations are facing unprecedented challenges. Existing pedagogical problems have not diminished; instead, new ones continue to emerge, widening the gap between teachers’ expectations and students’ learning realities. Nevertheless, advances in digital tools and AI technologies also present unprecedented opportunities for educational innovation.
This presentation takes the undergraduate EMI (English-Medium Instruction) required course Electromagnetism as an example to examine typical challenges currently faced in higher education. It further demonstrates how Large Language Models (LLMs) can assist in addressing these challenges through various teaching applications, including course content restructuring, real-time tutorial interaction, classroom activity design, automatic problem generation and solution, and personalized feedback mechanisms.
In terms of professional knowledge and linguistic ability, LLM-based AI has reached a level comparable to that of a doctoral student, while offering exceptional patience and accessibility. It is thus capable of replacing traditional teaching assistants in many instructional tasks and serving as a learning companion that provides individualized guidance and practice for students. For instructors, AI can also act as an efficient teaching assistant that supports course design, material generation, and conceptual organization—significantly reducing preparation workload and enhancing classroom interaction quality.
However, both teachers and students must remain aware that AI-generated information and suggestions should only be adopted after critical evaluation and verification. It is recommended that LLM AI be used in conjunction with other AI tools and reliable databases or search engines to cross-check information accuracy and maintain academic integrity. Finally, this report will introduce Uedu platform of National Central University as an experimental environment for AI-assisted teaching, providing practical insights for integrating AI teaching assistants into future higher education contexts.
【主講人】王家慶
國立中央大學
資訊工程學系
陳秀琪
國立中央大學
客語語文暨
社會科學學系
【講 題】
建置 AI「專業客語」語料庫
及互動式客語學習APP
【中文摘要】
隨著AI技術的發展和成熟,人工智慧廣泛運用在醫學、交通、農業、教育、環境保護、生產製造等等,號稱人類第四次工業革命的人工智慧改變了現代人的生活,帶來前所未有的巨大提升。AI技術與語言學習的結合,為學習者提供了動態化、高效能的學習工具。相對於琳瑯滿目的華語、英語學習APP,客語目前尚無。基於族群語言平權的訴求,在AI的浪潮下,客語的學習模式也必須搭上AI智能學習的列車,才能加速加廣客語的傳承,不致在若干年後出現客語學習的AI弱勢族群。另外,AI語音工程的運用,也提供了各場域不同語別間的溝通,不僅拉近了彼此的距離,也提高了解讀訊息的便利性。台灣已進入超高齡社會,為達到「痌瘝在抱」「醫病同語」之目標,不只要重視醫護在醫學上的技術,心理層面的醫護友善環境也不能被被忽略,所以,從醫護語言的使用無礙來提高長照品質,研發醫護客語對話系統是建構客語友善環境重要且必備的工作。
本研究是國科會三年期計畫,結合客語與人工智慧兩個領域,進行的工作包括三個方面,一是建置「專業客語語料庫」,收集的專業客語包括醫護、生活、公事、客家民族植物等相關之詞彙、口語及語音語料、書面語料。二是運用本計畫建置之「專業客語語料庫」及客委會的「臺灣客語語音資料庫」所收錄的語料,結合AI語音技術,以學習者和使用者的需求為主軸,設計「互動式客語學習APP」,此APP包括生活客語和公事客語兩個學習種類的應用程式。三是醫療照護客語對話系統、公事客語對話系統。
本研究今年度的工作集中在建置「專業客語語料庫」,包括醫護客語的語詞和診間對話收集、診間對話錄音、客語標音,目前完成心臟血液、腎臟、腦神經、泌尿、腸胃、呼吸胸腔、骨關節、疼痛症狀、新陳代謝等科別診間醫生與病人的對話共500篇,每篇平均有45-60句的對話內容,每篇有3組年齡層的對話錄音,總計大約有75-80小時的錄音時數。本研究基於上述語料開發三大AI技術支援互動式客語學習APP及醫護/公事對話系統,實現即時語音互動,助長照品質提升與客語公共服務推廣。三項技術分別是1.語音辨識(ASR):採用OpenAI Whisper模型訓練辨識模型,將客語語音轉為文字,並支援四縣腔與微噪音環境。2.機器翻譯(MT):以Transformer架構建構華客語相互翻譯系統,並透過自監督學習機制解決客語語料的稀缺問題。3.語音合成(TTS):使用非自回歸TTS結合BigV-GAN聲碼器,將文字轉為自然客語語音,保留韻律與語者特徵。今年度在成果產出方面,初步完成在診間病患以客語描述病症,AI將客語翻譯成華語給醫生聽,醫生以華語回答病患,AI再將華語翻譯成客語給病患聽,這過程都有文字的呈現。
關鍵詞:專業客語、人工智慧、客語學習APP、醫護客語、公事客語
【英文摘要】
【主講人】張家凱
國立中央大學
通識中心
【講 題】
從數據驅動走向共學
共創的數位世代教育
Omics與人機協作
實踐
【中文摘要】
隨著生成式人工智慧(Generative AI)的快速演進,高等教育正從傳統的知識傳遞走向以素養為導向與適性化學習的新典範。然而,僅靠文字互動或傳統測驗難以完整掌握學習者的認知、情緒與生理狀態。本演講介紹中央大學團隊提出的「教育Omics資料湖」概念與所建構的Uedu優學院平台,該平台整合語音、文字、圖像、心率變異(HRV)與學習歷程等多模態資料,使用多模態學習分析,以更全面的方式理解學習並支援教學,建立學生的數位孿生模組與適性化學習路徑藍圖。Uedu優學院教育Omics資料湖已在多門課程場域中驗證功能與教學成效,本次演說將展示如何透過生成式AI與智慧分析支援即時教學與素養導向學習,並呈現三項初步成果:(1)可視化工具在提升抽象概念理解上的實證;(2)於 Python 程式設計課程中結合 QuizGPT 與 UeduGPT 以促進學習遷移與學生自信的提升,以及(3)以 Prompt based認知效能評估方法追溯學習歷程。綜合而言,Uedu優學院在尊重機敏隱私與學術倫理的前提下,將教育大數據與人機協作轉化為智慧、創新、永續且具韌性的校園教學基礎設施,實踐跨領域人機共學共創,推動教育大數據的共享與實務應用。
【英文摘要】
As Generative Artificial Intelligence (GenAI) advances rapidly, higher education is undergoing a paradigm shift from traditional knowledge transmission toward competency based and adaptive learning. However, textual interactions and conventional assessments alone are insufficient to capture learners’ cognitive, emotional, and physiological states comprehensively. This presentation introduces the "Educational Omics Data Lake" and the Uedu platform developed by the National Central University team. The platform integrates multimodal data sources—including speech, text, images, heart rate variability (HRV), and learning trajectories—and applies multimodal learning analytics to generate richer characterizations of learning processes and to inform instructional decision making. Uedu constructs student digital twin modules and personalized adaptive learning pathway blueprints. Validated across multiple course contexts, the platform supports real time instructional interventions and competency oriented learning; preliminary outcomes include: (1) empirical evidence that a visualization tool enhances comprehension of abstract concepts; (2) improved learning transfer and learner confidence in a Python programming course via integration of QuizGPT and UeduGPT; and (3) reconstruction of learning trajectories using a prompt based cognitive performance assessment approach. With strict safeguards for sensitive data privacy and adherence to academic ethics, Uedu translates educational big data and human–AI collaboration into an intelligent, innovative, sustainable, and resilient campus teaching infrastructure, thereby facilitating cross disciplinary human–AI co learning and promoting the responsible sharing and practical application of educational big data.