雷射結構光渦場因具有多樣的角動量分布,不僅可以應用在光學鑷夾及泵浦等微粒捕捉以及流體驅動領域,亦可作為長距離光通訊的重要資訊單元。我們的研究工作之一是利用半導體端面激發的固態雷射技術,產生有多樣空間圖斑的高功率雷射脈衝,進而搭配光學模態轉換產生具有豐富角動量密度分布的高階雷射光渦場。未來也將持續發展雷射光渦在微粒及流體驅動上的技術。
Structured laser vortex fields with a variety of angular momentum distributions can not only be applied to optical tweezers and microfluidic actuation but also serve as essential information carriers for long-range optical communication. One of our research topics is using diode-pumped solid-state lasers to create high-power pulsed laser beams with various spatial patterns and to convert the generated modes into high-order vortex fields with abundant orbital-angular-momentum density. In the near future we plan to further develop micro-particle and fluid actuation techniques based on the generated high-order laser vortices.
克拉德尼(Chladni)平板振盪系統在聲學及物理學許多研究範疇都扮演相當重要的啟蒙角色。這個將聲音視覺化富有歷史卻仍引起普羅大眾廣泛興趣的科普實驗不僅可作為演示波動物理重要的經典範例,亦可以其為基礎開發新穎的表面聲場微粒操縱裝置。我們的研究工作之一是利用耦合共振的理論來分析並預測各種不同形狀、材質平板的共振模態,並藉由調變驅動源的位置、頻率、相位等參數,實現可彈性調整行進路徑的粒子操縱技術。未來亦期待以此技術為基礎推廣至三維聲場的操控,進行聲波懸浮的相關研究。
Chladni's vibrating plate systems has acted as a significant role which enlightens many studies in acoustics and physics. This historic experiment to visualize sound not only still serve as an elegant paradigm for wave physics demonstration in popular science but also offer a solid foundation to develop novel micro-particle manipulation devices by surface acoustic wave. One of our research topics is to utilize theoretical model of coupled resonance to analyze and predict the resonant modes of vibrating plates with different geometries and materials. Based on the analysis, we further explore the dependence of response wave function on the excitation position, frequency, and relative phase to realize particle steering with flexibly varied moving tracks. We expect to generalize the developed technique to 3D acoustic wave manipulation to study issues related to acoustic levitation.