[J8] S. Dutta, N. Wilde, and S. L. Smith,
Informative Path Planning for Active Regression with Gaussian Processes via Sparse Optimization.
IEEE Transactions on Robotics (T-RO), 2025.
[J7] A. Botros, N. Wilde, A. Sadeghi, J. Alonso-Mora, and S. L. Smith,
Regret-based Sampling of Pareto Fronts for Multi-Objective Robot Planning Problems.
IEEE Transactions on Robotics (T-RO), 2024. [PDF]
[J6] N. Wilde, S. L. Smith, and J. Alonso-Mora,
Scalarizing Multi-Objective Robot Planning Problems using Weighted Maximization.
IEEE Robotics and Automation Letters (RA-L), 2024. [arXiv]
[J5] N. Wilde, and J. Alonso-Mora,
Statistically Distinct Plans for Multi-Objective Pickup and Delivery.
IEEE Transactions on Robotics (T-RO), 2024. [arXiv]
[J4] A. Botros, B. Gilhuly, N. Wilde, A. Sadeghi, J. Alonso-Mora, and S. L. Smith,
Optimizing Task Waiting Times in Dynamic Vehicle Routing.
IEEE Robotics and Automation Letters (RA-L), 2023. [arXiv]
[J3] N. Wilde, A. Sadeghi, and S. L. Smith,
Learning Submodular Objectives for Team Environmental Monitoring.
IEEE Robotics and Automation Letters (RA-L) 2021. [arXiv]
[J2] N. Wilde, A. Blidaru, S. L. Smith, and D. Kulić,
Improving User Specifications for Robot Behavior through Active Preference Learning: Framework and Evaluation.
International Journal of Robotics Research (IJRR), 2020. [PDF]
[J1] N. Wilde, D. Kulić, and S. L. Smith,
Bayesian Active Learning for Collaborative Task Specification using Equivalence Regions.
IEEE Robotics and Automation Letters (RA-L), 2019. [PDF]
[C14] N. Wilde, and J. Alonso-Mora,
Designing Heterogeneous Robot Fleets for Task Allocation and Sequencing.
IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Boston, US, 2023.
[C13] S. Dutta, N. Wilde, and S. L. Smith,
A Unified Approach to Optimally Solving Sensor Scheduling and Sensor Selection Problems in Kalman Filtering.
62st IEEE Conference on Decision and Control (CDC), Singapore, 2023.
[C12] S. Dutta, N. Wilde, P. Tokekar and S. L. Smith,
Approximation Algorithms for Robot Tours in Random Fields with Guaranteed Estimation Accuracy .
IEEE International Conference on Robotics and Automation (ICRA), London, UK, 2023.
[C11] N. Wilde, and J. Alonso-Mora,
Do we use the Right Measure? Challenges in Evaluating Reward Learning Algorithms.
Conference on Robot Learning (CoRL), Auckland, New Zealand, 2022.
[C10] N. Wilde, and J. Alonso-Mora,
Online Multi-Robot Task Assignment with Stochastic Blockages.
61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico, 2022.
[C9] Y. Cai, A. Dahiya, N. Wilde, and S. L. Smith,
Scheduling Operator Assistance for Shared Autonomy in Multi-Robot Teams .
61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico, 2022.
[C8] S. Dutta, N. Wilde, and S. L. Smith,
Informative Path Planning in Random Fields via Mixed Integer Programming.
61st IEEE Conference on Decision and Control (CDC), Cancun, Mexico, 2022.
[C7] A. Botros, N. Wilde, A. Sadeghi, J. Alonso-Mora, and S. L. Smith,
Error-Bounded Approximation of Pareto Fronts in Robot Planning Problems.
15th International Workshop on the Algorithmic Foundations of Robotics (WAFR), College Park, MD, 2022, [arXiv].
[C6] S. Dutta, N. Wilde, and S. L. Smith,
An Improved Greedy Algorithm for Subset Selection in Linear Estimation.
IEEE European Control Conference (ECC), London, UK, 2022. [PDF]
[C5] N. Wilde, E. Biyik, D. Sadigh, and S. L. Smith,
Learning Reward Functions from Scale Feedback.
5th Annual Conference on Robot Learning (CoRL), London, UK, 2021.
[C4] N. Wilde, D. Kulić, and S. L. Smith.
Active Preference Learning using Maximum Regret.
In IEEE International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, 2020. [PDF] [arXiv]
[C3] A. Botros, N. Wilde, and S. L. Smith.
Learning Control Sets for Lattice Planners from User Preferences.
The 14th International Workshop on the Algorithmic Foundations of Robotics (WAFR), Oulu, Finland, 2020. [PDF]
[C2] N. Wilde, D. Kulić, and S. L. Smith.
Learning User Preferences from Corrections on State Lattices.
IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020, pp. 4913-4919. [PDF]
[C1] N. Wilde, D. Kulić, and S. L. Smith.
Learning User Preferences in Robot Motion Planning through Interaction.
IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, pages 619-626, 2018 [DOI] [PDF] [Video]