脳機能計測・行動計測とデータ科学的アプローチを併用することで人間行動の認知神経科学的メカニズムを解明し, その知見を応用した支援技術開発に取り組んでいます.
We aim to elucidate the cognitive neuroscientific mechanisms underlying human behavior by combining brain function measurement, behavioral analysis, and data science approaches. Additionally, we strive to develop assistive technologies based on the insights obtained in the basic researches.
日々のコミュニケーションでは, 表情・身振り・音声などの多様な感覚情報が非言語的なコミュニケーションメディアとして活用されています. 脳機能計測, 視線計測, 心理物理学実験などを用いて, 非言語的コミュニケーション情報の 脳内での情報処理プロセスを研究しています. 意識下でのコミュニケーション情報認知や, 身体運動からの印象形成など, 研究テーマは多岐にわたります.
In daily communication, diverse sensory information such as facial expressions, gestures, and vocal cues serve as media for nonverbal communication. We are investigating the neural processing of nonverbal communication cues using brain function measurement, eye-tracking, and psychophysical experiments. Our research covers a wide range of topics, including the ”unconscious” perception of communication cues and impression formation based on body movements.
関連業績 Related Achievement:
Doi, H., & Shinohara, K. “Unconscious Presentation of Fearful Face Modulates Electrophysiological Responses to Emotional Prosody” Cerebral Cortex, 25, pp. 817-32, 2015.
Doi, H., & Shinohara, K. “Event-Related Potentials Elicited in Mothers by Their Own and Unfamiliar Infants' Faces with Crying and Smiling Expression” Neuropsychologia, 50 (7), pp. 1297-1307, 2012.
非言語的コミュニケーション情報の認知を含む社会・情動機能には著しい個人差があります. さらに, 精神疾患の中には, 社会・情動機能の障害を主な症状とするものがあります. このようなサブクリニカル(未病)から疾患レベルにまたがる社会・情動機能の個人差が生じる生物・環境学的要因を, 生体試料解析・実験心理学計測・ 発達コホートなどを組み合わせた学際的なアプローチにより研究しています.
Socio-emotional functions, including the perception of nonverbal communication cues, exhibit significant individual differences. Moreover, some psychiatric conditions are characterized by severe impairments insocio-emotional functions. We are investigating the biological and environmental factors that contribute to these individual differences, ranging from subclinical (pre-disease) states to clinical conditions, using an interdisciplinary approach that combines biological sample analysis, experimental psychology, and developmental cohort studies.
関連業績 Related Achievement:
Doi, H., Furui, A., Ueda, R., Shimatani, K., Yamamoto, M., Eguchi, A., Sagara, N., Sakurai, K., Mori, C., Tsuji, T. "Risk of autism spectrum disorder at 18 months of age is associated with prenatal level of polychlorinated biphenyls exposure in a Japanese birth cohort. " Scientific Reports, Vol. 14, art.no. 31872, 2024.
自閉スペクトラム症を中心とした発達障害の子どもを早い段階で見つけ出すことは, 彼らの社会適応を改善するために重要です. そこで, コンピュータビジョンと機械学習を用いた自閉スペクトラム症児・者のスクリーニング技術開発に取り組んでいます.
Early identification of children with developmental disorders, including autism spectrum disorder (ASD), is crucial for improving their social adaptation. To address this, we are developing screening technologies for individuals with ASD using computer vision and machine learning.
関連業績 Related Achievement:
Doi,H., Iijima, N., Furui, A., Soh, Z., Yonei, R., Shinohara, K., Iriguchi, M., Shimatani, K., & Tsuji, T. "Prediction of autistic tendencies at 18 months of age via markerless video analysis of spontaneous body movements in 4-month-old infants" Scientific Reports Vol. 12, Article number: 18045, 2022.
Doi, H., Tsumura, N., Kanai, C., Masui, K., Mitsuhasi, R., & Nagasawa, T. "Automatic classification of adult males with and without autism spectrum disorder by non-contact measurement of autonomic nervous system activation" Frontiers in Psychiatry Vol. 12, art.no.625978, 2021.
表情変化や生理反応といった"マルチ―モーダル生体情報" を手掛かりとして, 時々刻々と変化する内的状態の可視化に挑んでいます. うまく言葉にできない”意識の流れ”を定量化するための新たな表現手段を確立することが本研究の目的です. また、可視化技術を応用した新な教育支援システムの開発にも取り組んでいます.
We are working to visualize the minute-by-minute fluctuations of internal states by using "multimodal biological information" such as facial expressions and physiological responses. The goal of this research is to establish new methods of expression that can quantify the elusive "Flow of Consciousness" that is often difficult to articulate. Furthermore, we are also developing novel educational support systems that leverage these visualization techniques.
関連業績 Related Achievement:
Kawasaki, S., Ashida, K., Nguyen, V.T., Ngo, T.D., Le, D.D., Doi, H., Tsumura, N. "Intrinsic Motivational States Can Be Classified by Non-Contact Measurement of Autonomic Nervous System Activation and Facial Expressions." Applied Sciences, Vol. 14(15), Article Number: 6697, 2024.