N. Das, S. Das, J. Sarkar: On the similarity of Foguel-like operators to contraction, in preparation.
N. Das, S. Das, J. Sarkar: Toeplitz + compact Hankel operators, in preparation.
N. Das, S. Das, J. Sarkar: Invariant subspaces of Brownian shifts on vector-valued Hardy spaces (2025).
N. Das, S. Das, J. Sarkar: Invariant subspaces and the C_00-property of Brownian shifts (2025), Annali di Matematica Pura ed Applicata (1923-), available online.
N. Das, S. Das, J. Sarkar: Paired and Toeplitz + Hankel operators (2024).
B. Bhowmik, N. Das: Bohr phenomenon involving the Fourier transforms of certain functions defined on a topological group, Illinois Journal of Mathematics, 69 (2025), no. 1, 1-21.
N. Das: The p-Bohr radius for vector-valued holomorphic and pluriharmonic functions, Forum Mathematicum, 36 (2024), no. 3, 765-782.
N. Das: A logarithmic lower bound for the second Bohr radius, Canadian Mathematical Bulletin, 67 (2024), no. 1, 90-93.
N. Das: Estimates for generalized Bohr radii in one and higher dimensions, Canadian Mathematical Bulletin, 66 (2023), no. 2, 682-699.
B. Bhowmik, N. Das: An operator-valued analogue of a result of Bombieri, Complex Analysis and Operator Theory, 16 (2022), no. 2, Paper No. 18, 10 pp.
N. Das: Refinements of the Bohr and Rogosinski phenomena, Journal of Mathematical Analysis and Applications, 508 (2022), no. 1, Article no. 125847, 10 pp.
B. Bhowmik, N. Das: Bohr radius and its asymptotic value for holomorphic functions in higher dimensions, Comptes Rendus Mathématique, 359 (2021), 911–918.
B. Bhowmik, N. Das: A characterization of Banach spaces with nonzero Bohr radius, Archiv der Mathematik, 116 (2021), no. 5, 551–558.
B. Bhowmik, N. Das: Bohr phenomenon for operator-valued functions, Proceedings of the Edinburgh Mathematical Society, 64 (2021), no. 1, 72–86.
B. Bhowmik, N. Das: On some aspects of the Bohr inequality, Rocky Mountain Journal of Mathematics, 51 (2021), no. 1, 87–96.
B. Bhowmik, N. Das: Bohr phenomenon for locally univalent functions and logarithmic power series, Computational Methods and Function Theory, 19 (2019), no. 4, 729–745.
B. Bhowmik, N. Das: Bohr phenomenon for subordinating families of certain univalent functions, Journal of Mathematical Analysis and Applications, 462 (2018), no. 2, 1087–1098.