nꙜ(///n)n = Fω^ω^3 (n) in fast growing hierhacy or nꙜ(//n, n, n, n, n, n...n, n,n)n with n entires.
nꙜ([1]n)n = Fω^ω^ω (n) in fast growing hierhacy or nꙜ(///////...//////n)n with n slashes. a began of Dimesional Yus.
nꙜ([1][1]n)n = Fω^ω^(ω2) (n) in fast growing hierhacy or nꙜ([1]////////...////n)n with n slashes.
nꙜ([2]n)n = Fω^ω^ω^2 (n) in fast growing hierhacy or nꙜ([1][1][1][1]...[1][1][1]n)n with n [1]'s. reached 3 dimesional yus.
nꙜ([3]n)n = Fω^ω^ω^3 (n) in fast growing hierhacy or nꙜ([2][2][2][2]...[2][2][2]n)n with n [2]'s
nꙜ([1, 2]n)n = Fω^ω^ω^ω (n) in fast growing hierhacy or nꙜ([n-1][n-1][n-1][n-1]...[n-1][n-1][n-1]n)n with n [n-1]'s. When "-" denotes subtract operator
nꙜ([n, 2]n)n = Fω^ω^ω^(ω+n) (n) in fast growing hierhacy or nꙜ([n-1, 2][n-1,2][n-1,2][n-1,2]...[n-1,2][n-1,2][n-1,2]n)n with n [n-1,2]'s
nꙜ([n, 3]n)n = Fω^ω^ω^ω2 (n) in fast growing hierhacy or nꙜ([n-1, 3][n-1,3][n-1,3][n-1,3]...[n-1,3][n-1,3][n-1,3]n)n with n [n-1,2]'s
nꙜ([n, n]n)n = Fω^ω^ω^(ω*n-1) (n) in fast growing hierhacy or nꙜ([n-1, n][n-1,n][n-1,n][n-1,n]...[n-1,n][n-1,n][n-1,n]n)n with n [n-1,n]'s
nꙜ([n, n, 2]n)n = Fω^ω^ω^ω^2 (n) in fast growing hierhacy or nꙜ([n-1, n,2][n-1,n,2][n-1,n,2][n-1,n,2]...[n-1,n,2][n-1,n,2][n-1,n,2]n)n with n [n-1,n,2]'s
nꙜ([n, n, n]n)n = Fω^ω^ω^ω^ω (n) in fast growing hierhacy or nꙜ([n-1, n,n][n-1,n,n][n-1,n,n][n-1,n,n]...[n-1,n,n][n-1,n,n][n-1,n,n]n)n with n [n-1,n,n]'s
nꙜ([[1]n]n)n = Fω^^n (n) in fast growing hierhacy or nꙜ([n-1, n,n,n...n,n,n][n-1,n,n,n,n...n,n,n][n-1,n,n,n,n...n,n,n][n-1,n,n,n,n...n,n,n]...[n-1,n,n,n,n...n,n,n][n-1,n,n,n,n...n,n,n][n-1,n,n,n,n...n,n,n]n)n with n [n-1,n,n,n,n...n,n,n]'s.
nꙜ([[1][1]n]n)n = Fε0 (n) in fast growing hierhacy or nꙜ([[1]n,n,n,n,...n,n,n,n]n]n)n with n recursions.