Spectral stability and eigenvalues confinement for self- and non-self-adjoint Hamiltonians from Quantum Mechanics.
Multipliers method, Birman-Schwinger principle, Mourre's theory, Lieb–Thirring-type inequalities
Existence, blow-up and lifespan estimates for nonlinear wave equations with small initial data
Estimates for resolvent operators and applications to spectral stability and Kato's smoothing
[2] Asymptotic fractional uncertainty principle for the Helmholtz equation with periodic scattering data
With J. Canto and L. Vega. arXiv:2503.02868 (2025)
[1] Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian
With L. Fanelli, H. Mizutani and L. Roncal. arXiv.2409.11943 (2024)
[10] Non-existence of radial eigenfunctions for the perturbed Heisenberg sublaplacian
With L. Fanelli, H. Mizutani and L. Roncal (2025). Journal of Fourier Analysis and Applications 31, 37
[9] Recent Developments in Spectral Theory for Non-self-adjoint Hamiltonians
With L. Cossetti and L. Fanelli (2024). In: Machihara, S. (eds) Mathematical Physics and Its Interactions. ICMPI 2021. Springer Proceedings in Mathematics & Statistics, vol 451. Springer, Singapore
[8] Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques
With N.-A. Lai (2023). Journal of Evolution Equations 23, 65.
[7] Spectral enclosures for Dirac operators perturbed by rigid potentials
With H. Mizutani (2022). Reviews in Mathematical Physics 34(8), 2250023.
[6] Blow-up and lifespan estimate for generalized Tricomi equations related to Glassey conjecture
With N.-A. Lai (2022). Mathematische Zeitschrift 301, 3369–3393.
[5] Localization of eigenvalues for non-selfadjoint Dirac and Klein-Gordon operators
With P. D’Ancona, L. Fanelli and D. Krejčiřík (2022). Nonlinear Analysis 214, 112565.
[4] Eigenvalue bounds for non-selfadjoint Dirac operators
With P. D’Ancona and L. Fanelli (2022). Mathematische Annalen 383, 621–644.
[3] Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato’s type lemma
With N.-A. Lai and H. Takamura (2020). Journal of Differential Equations 269(12), 11575–11620.
[2] Short time blow-up by negative mass term for semilinear wave equations with small data and scattering damping
With N.-A. Lai and H. Takamura (2020). In: Giga, Y., Hamamuki, N., Kubo, H., Kuroda, H., Ozawa, T. (eds) Advanced Studies in Pure Mathematics 85, The Role of Metrics in the Theory of Partial Differential Equations, 391–405. Mathematical Society of Japan, Tokyo, Japan.
[1] Wave-like blow-up for semilinear wave equations with scattering damping and negative mass term
With N.-A. Lai and H. Takamura (2019). In: D’Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds) New tools for nonlinear PDEs and application, 217–240. Trends in Mathematics. Birkhäuser/Springer, Cham.
Spectral Theory of Non-self-adjoint Dirac Operators and Other Dispersive Models (2025). Studi e Ricerche, Sapienza Università Editrice. ISBN: 978-88-9377-366-9.
Defended with honours on 2 Dec 2021. Winner of the Premio Tesi di Dottorato 2023 by Sapienza Università Editrice.