RESEARCH
Quantitative theory of stochastic homogenization
N. Clozeau, A. Gloria and S. Qi. Quantitative homogenization for log-normal coefficients, ArXiv Preprint, submitted (2024)
N. Clozeau and A. Gloria. Quantitative nonlinear homogenization : control of oscillations, Archive for Rational Mechanics and Analysis (2023)
N. Clozeau. Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields, Stochastics and Partial Differential Equations: Analysis and Computations (2022)
Numerical methods in stochastic homogenization
N. Clozeau, M. Josien, F. Otto and Q. Xu. Bias in the representative volume element method: periodize the ensemble instead of its realizations, Foundations of Computational Mathematics (2023)
N. Clozeau and L. Wang. Artificial boundary conditions for random elliptic systems with correlated coefficient field, SIAM Multiscale Modelling and simulation (2024)
Homogenization in material sciences
O. Anza Hafsa, N. Clozeau and J-P. Mandallena. Homogenization of nonconvex unbounded singular integrals, Annales mathématiques Blaise Pascal (2017)
Quantitative theory of optimal random matching problems
N. Clozeau and F. Mattesini. Annealed quantitative estimates for the quadratic 2D-discrete random matching problem, Probability theory and related fields (2024)
Conference proceedings
N. Clozeau, M. Josien, M. Schneider and Lihan Wang. Numerical approaches to homogenization, Oberwolfach Workshop Report, Arbeitsgemeinschaft: Quantitative Stochastic Homogenization (2022)
PhD thesis
Quantitative estimates in stochastic homogenization of elliptic equations and systems, supervisors Antoine Gloria (LJLL) and Felix Otto (MPI-MIS)