[9] Noda N.*, Sekine Y., Takahashi Y., Fukushi K., Sakuma H., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K., & McGlynn S.E. (2025), Hydrogen Generation From Ferrous Saponite in Reaction With H2S-Containing Fluid: Relevance to Early Martian Habitability. Journal of geophysical research. Planets, 130, e2024JE008538. DOI: 10.1029/2024JE008538
[8] Noda N., Nomura K., Takahashi N., Hashiya F., Abe H., & Matsuura T.* (2024), Slow freeze‐thaw cycles enhanced hybridization of kilobase DNA with long complementary sticky ends. ChemSystemsChem e202400025. DOI: 10.1002/syst.202400025
[7] Hirai E.*, Sekine Y.*, Zhang N., Noda N., Tan S., Takahashi Y., & Kagi H. (2023), Rapid Aggregation and Dissolution of Organic Aerosols in Liquid Methane on Titan. Geophysical Research Letters 50(12), DOI: 10.1029/2023GL103015 (Press release issued by ELSI: EN, 日本語)
[6] Jia T. Z.*, Johnson-Finn K. N., Alian O. M., Bonati I., Fujishima K., Grefenstette N., Heenatigala T., Li Y., Noda N., Penev P. I., Prondzinsky P., & Smith H. B. (2022), AbGradCon 2021: Lessons in Digital Meetings, International Collaboration, and Interdisciplinarity in Astrobiology. International Journal of Astrobiology 1–27. DOI: 10.1017/S1473550422000258
[5] Noda N.*, Sekine Y., Tan S., Kikuchi S., Shibuya T., Kurisu M., Takahashi Y., Fukushi K., & Rampe E. B. (2022), Characterization of groundwater chemistry beneath Gale Crater on early Mars by hydrothermal experiments. Icarus 386, 115149. DOI: 10.1016/j.icarus.2022.115149
初期火星地下の水ー岩石反応を熱水実験で再現し、地下水の溶存化学組成とそれを左右する二次鉱物組成を復元した。溶存シリカに富むアルカリ性の地下水組成から、火星の堆積物が地下水による続成作用を受けたという仮説が着陸探査結果と矛盾する可能性を示した。
[4] Sakuma H.*, Morida K., Takahashi Y., Fukushi K., Noda N., Sekine Y., & Tamura K. (2022), Synthesis of Ferrian and Ferro Saponites: Implications for the structure of (Fe, Mg) smectites synthesized in reduced conditions, American Mineralogist, 107 (10), 1926–1935. DOI: 10.2138/am-2022-8231
[3] Noda N.*, Yamashita S., Takahashi Y., Matsumoto M., Enokido Y., Amano K., Kawai T., Sakuma H., Fukushi K., Sekine Y., & Nakamura T. (2021), Anaerobic Microscopic Analysis of Ferrous Saponite and Its Sensitivity to Oxidation by Earth’s Air: Lessons Learned for Analysis of Returned Samples from Mars and Carbonaceous Asteroids, Minerals 11(11), 1244. DOI: 10.3390/min11111244
地球大気中の酸素に非常に酸化されやすい粘土鉱物・二価鉄サポナイトを無酸素環境で合成し、顕微分子化学分析(特に走査型透過X線顕微鏡STXM)で酸化を抑えられる分析手順を実証した。また、半日程度の大気暴露が分析結果に影響を及ぼすことを明らかにした。
[2] Noda N.†, Imamura S.†, Sekine Y.*†, Kurisu M., Fukushi K., Terada N., Uesugi S., Numako C., Takahashi Y., & Hartmann J. (2019), Highly Oxidizing Aqueous Environments on Early Mars Inferred From Scavenging Pattern of Trace Metals on Manganese Oxides, Journal of Geophysical Research: Planets 124(5), 1282-1295. DOI: 10.1029/2018JE005892
(†: Equally contributed to this work )火星探査車Curiosityが湖底堆積物中に検出したマンガン酸化物の沈殿過程を再現する室内実験を行い、探査で得られた微量元素組成を説明するには二酸化マンガン(MnO₂)を沈殿させる非常に酸化的な初期火星表層環境が必要となることを示した。
[1] 野田 夏実*, 今村 翔子, 関根 康人, 上杉 宋一郎, 栗栖 美菜子, 高橋 嘉夫, 寺田 直樹, 福士 圭介 (2018),マンガン酸化物と室内実験から示唆される初期火星の酸化的表層環境, 日本惑星科学会誌 遊星人 27(3), 138-146.
[32] Noda N., Shinoda T., & Matsuura T., Exploring Freeze-Thaw Cycles as a Driver of Genetic Complexity: Can Icy Conditions Promote DNA Elongation? The second Biennial European Astrobiology Conference (BEACON2025) (Reykjavik, 2025.7, Oral)
[31] Noda. N, Sekine Y., Takahashi Y., Fukushi K., Sakuma H., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K., & McGlynn S.E. (2025), Hydrogen Generation From Ferrous Saponite in Reaction With H2S-Containing Fluid: Relevance to Early Martian Habitability. FALCON2025 (Reykjavik, 2025.6, Poster)
[30] Noda N., DNA hybridization and vesicle growth via freeze-thaw cycles: Implications for the emergence of evolvable systems, 1st India-Japan Workshop on Physical Aspects of Living Systems (Tokyo, JPN, 2025. 2, Oral)
[29] Noda N. & Matsuura T., Can slow freeze-thaw cycles be an effective driver for assembling oligo DNAs into genetic code?, 13th ELSI International Symposium 2025 (Tokyo, JPN, 2025. 1, Poster)
[28] Noda N., DNA hybridization and vesicle growth via freeze- thaw cycles: Implications for the emergence of evolvable systems, 2024 BrainLink X-Lab Day (Busan, KOR, 2024. 12, Oral)
[27] Noda N. & Matsuura T., Slow freeze-thaw experiments to enhance enzymatic ligation among 10 kbp long DNA, 21st IUPAB Congress 2024 (Kyoto, JPN, 2024.6, Poster)
[26] Noda N., Takahashi N., Nomura K., Hashiya F., Abe H. & Matsuura T., Effective DNA hybridization via freeze-thaw cycles and implication for prebiotic formation of large information molecules, Joint CO world & 12th ELSI Symposium (Tokyo, JPN, 2024.1, Poster)
[25] Noda N., Shinoda T., Kaneko K., Sekine Y. & Matsuura T., Vesicle fusion via slow freezing and eutectic melting: Implications for the emergence of a protocell system, Origins of Life Donostia Meeting (OLDM') 2023 (SanSebastian, ESP, 2023.10, Poster & Flash talk)
[24] Noda N., Shinoda T., Kaneko K., Sekine Y. & Matsuura T.,Vesicle fusion via slow freeze-thaw cycles and its implications for the emergence of a protocell, Molecular Origins of Life, Munich 2023 (Online, 2023.6, Poster)
[23] Noda N., Sekine Y., Takahashi Y., Sakuma H., Fukushi K., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K. & McGlynn S., Reduction of H₂S and CO₂ into H₂ and CO via hydrothermal interaction with ferrous saponite on early Mars, The Astrobiology Science Conference 2022 (Atlanta, GA, USA & online, 2022.5, Oral)
[22] Hirai E., Sekine Y., Zhang N., Noda N. & Kagi H., Rapid Dissolution of Organic Aerosols by Interactions with Liquid Methane on Titan, The Astrobiology Science Conference 2022 (Atlanta, GA, USA & online, 2022.5, Oral)
[21] Hirai E., Sekine Y., Zhang N., Noda N. & Kagi H., Effective Dissolution of Aromatic Hydrocarbons from Organic Aerosols by Interactions with Liquid Methane on Titan, 53rd Lunar and Planetary Science Conference (The Woodlands, TX, USA & online, 2022.3, Oral)
[20] Taniguchi K., Sekine Y., Kodama T., Noda N., Genda H. & Abe-Ouchi A., Roles of groundwater transport on climate systems of land planets, AGU Fall Meeting 2021 (New Orleans, LA, USA & online, 2021.12, Poster)
[19] Noda N., Sekine Y., Takahashi Y., Sakuma H., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K. & McGlynn S., Hydrogen generation through interactions of ferrous saponite with H₂S-rich fluids on early Mars: Implications for planetary climate, environmental evolution, and habitability, AGU Fall Meeting 2021 (New Orleans, LA, USA & online, 2021.12, Oral)
[18] Hirai E., Sekine Y., Zhang N., Noda N., Takahashi Y. & Kagi H., Laboratory simulations of organic evaporite formation on Titan, AGU Fall Meeting 2021 (New Orleans, LA, USA & online, 2021.12, Poster)
[17] Fortier V., Debaille V., Dehant V., Bultel B., Debecker D., Bravo P., Sekine Y., Tan S. & Noda N., Experimental study of serpentinization and abiotic CH4 production in martian conditions, Goldschmidt2022 (Virtual, 2021.7)
[16] Noda N., Sekine Y., Takahashi Y., Sakuma H., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K. & McGlynn S., The role of ferrous saponite in the formation of sulfur-bearing organic matter on early Earth and early Mars, Goldschmidt2021 (Virtual, 2021.7, Oral)
[15] Kaneko K., Sekine Y., Shibuya T., Ueda H. & Noda N., Impact-generated hydrothermal systems that can promote organic synthesis: Implications for the origin of life, JpGU-AGU JointMeeting 2020 (Virtual, 2020.7)
[14] Sugiuchi M., Sekine Y., Tan S., Noda N., Takahashi Y. & Ramirez R., Effective formation of Al-rich surface clays through acidic water activity on early Mars, JpGU-AGU JointMeeting 2020 (Virtual, 2020.7)
[13] Kaneko K., Sekine Y., Shibuya T., Ueda H. & Noda N., Impact-Induced Hydrothermal Systems on Early Earth: CH4 Production and the Origin of Life, Goldschmidt2020 (Virtual, 2020.6)
[12] Sugiuchi M., Sekine Y., Tan S., Noda N., Takahashi Y. & Ramirez R., Effective Formation of Al-Rich Surface Clays Through Highly Acidic Water Activity on Early Mars, Goldschmidt2020 (Virtual, 2020.6)
[11] Noda N., Sekine Y., Tan S., Shibuya S., Genda H. & Wordsworth R., Groundwater upwelling and silica deposition within Gale in (semi-)arid climate on early Mars, The 2nd International Winter School for Aquaplanetology (Kuamaoto, JPN, 2020.2, Poster)
[10] Sekine Y., Noda N., Shibuya T., Genda H., Shoji D. & Sugiura K., Hydrological circulations within small icy bodies: Possible chemical heterogeneity within porous rocky cores of proto-planets, planetesimals, and icy satellites, AGU Fall Meeting 2019 (San Francisco, CA, USA, 2019.12, Poster)
[9] Noda N., Sekine Y., Tan S., Shibuya S., Genda H. & Wordsworth R., Semiarid climate and upwelling hydrothermal groundwater as a driving force for silica-rich deposits in early Gale lakes on Mars, AGU Fall Meeting 2019 (San Francisco, CA, USA, 2019.12, Oral)
[8] Noda N., Sekine Y., Tan S., Shibuya S. & Genda H., Groundwater upwelling and silica deposition within Gale in (semi-)arid climate on early Mars, Goldschmidt2019 (Barcelona, ESP, 2019.8, Poster)
[7] Noda N., Sekine Y., Tan S., Shibuya S. & Genda H., Groundwater upwelling and redox-based habitability within Gale crater lake on early Mars, Astrobiology Graduate Conference 2019 (Salt Lake City, UT, USA, 2019.7, Oral)
[6] Noda N., Sekine Y., Tan S., Shibuya S. & Genda H., Groundwater Upwelling into a Gale Crater Lake on Early Mars: A Source of Silica and Ferrous Iron, The 50th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 2019.3, Poster)
[5] Sekine Y., Imamura S., Noda N., Takahashi Y., Uesugi S., Kurisu M. & Hartmann J., High-O2, low-CO2 atmosphere on early Mars inferred from manganese oxide deposits, AGU Fall Meeting 2017 (New Orleans, USA, 2017.12, Poster)
[4] Imamura S., Noda N., Sekine Y., Tabata H., Kurisu M. & Takahashi Y., Low-CO2 Water Environment for Ancient Aquifer within Gale Crater Inferred from Manganese Oxidation Experiments, Goldschmidt2017 (Paris, FRA, 2017.8, Poster)
[3] Noda N., Imamura S., Sekine Y., Uesugi S., Kurisu M., Murakami T.& Takahashi Y., High-O2 atmosphere on early Mars? Interpretation of Mn-oxide on Gale crater by laboratory experiments, Goldschmidt2017 (Paris, FRA, 2017.8, Oral)
[2] Noda N., Imamura S., Sekine Y., Uesugi S., Kurisu M., Miyamoto C., Tabata H., Murakami T.& Takahashi Y., INTERPRETATION OF MANGANESE OXIDE ON GALE CRATER AND OXIDIZING ENVIRONMENT ON EARY MARS., Astrobiology Graduate Conference 2017 (Charlottesville, VA, USA, 2017.6, Oral)
[1] Noda N., Imamura S., Sekine Y., Tabata H., Uesugi S., Murakami T. and Takahashi Y., Low-CO2 Atmosphere on Early Mars? An Interpretation of Manganese Oxide on Gale Crater by Laboratory Experiments, The 48th Lunar and Planetary Science Conference (The Woodlands, TX, USA, 2017.3, Poster)
[20] Noda N., Takahashi N., Nomura K., Hashiya F., Abe H. & Matsuura T., Effective DNA hybridization via freeze-thaw cycles and implication for prebiotic formation of large information molecules, The 61th Annual Meeting of the Biophysical Society of Japan (名古屋, 2023.11, Oral in English)
シンポジウム「01 From molecules to systems, and eventually to life: high resolution Origins of Life research (分子の集合からシステムへ、そして生命へ:高解像な生命の起源研究)」にて発表[19] 野田 夏実, 高橋 南帆, 野村 浩平, 橋谷 文貴, 阿部 洋, 松浦 友亮, 凍結融解によるDNA連結反応促進と長鎖情報分子の生成過程への示唆, 「細胞を創る」研究会16.0 (東京, 2023.09, Poster)
[18] 野田 夏実, 篠田 達也, 金子 和夢, 関根 康人, 松浦 友亮, 凍結融解サイクルによるベシクル融合実験:原始細胞生成過程への示唆, 「細胞を創る」研究会15.0 (東京, 2022.10, Poster)
[17] Noda N., Shinoda T., Kaneko K., Tanaka Y., Sekine Y. & Matsuura T., Vesicle fusion via slow freeze-thaw cycles and its implications for the emergence of a protocell, The 60th Annual Meeting of the Biophysical Society of Japan (北海道, 2022.9, Poster)
[16] 野田 夏実, 関根 康人, 高橋 嘉夫, 佐久間 博 , 福士圭介, 河合 敬宏 , 中川 麻悠子, 北台 紀夫 , Kristin Johnson Finn, Shawn McGlynn, 二価鉄サポナイトの還元力がもたらす新しい水素供給過程: 実験室で復元した初期火星環境から迫るハビタビリティ, ISAS宇宙生命探査シンポジウム (オンライン, 2022.3, Invited talk)
[15] Noda N., Sekine Y., Takahashi Y., Sakuma H., Fukushi K., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K. & McGlynn S., Hydrogen generation through interactions of ferrous saponite with H₂S-rich fluids on early Mars: Implications for planetary climate, environmental evolution, and habitability, 第23回惑星圏研究会(SPS2022) (Online, 2022.2, Invited talk)
[14] 谷口 啓悟, 関根 康人, 小玉 貴則, 野田 夏実, 玄田 英典, 阿部 彩子, 地下水輸送と透水率の鉛直変化を考慮した陸惑星の大気・気候・水循環, 日本惑星科学会 秋季講演会 (オンライン, 2021.9, Oral)
[13] 野田 夏実, 関根 康人, 高橋 嘉夫, 佐久間 博 , 河合 敬宏 , 中川 麻悠子, 北台 紀夫 , Kristin Johnson Finn, Shawn McGlynn, 初期火星における新たな水素分子生成過程: 惑星気候、環境進化、ハビタビリティへの示唆, 日本惑星科学会 秋季講演会 (オンライン, 2021.9, Oral)
[12] 野田 夏実, 関根 康人, 高橋 嘉夫, 佐久間 博 , 河合 敬宏 , 中川 麻悠子, 北台 紀夫 , Kristin Johnson Finn & Shawn McGlynn, 二価鉄サポナイトからの水素分子生成:分子地球化学による初期火星環境への示唆, 日本地球化学会 第68回年会 (青森/オンライン, 2021.9, Oral)
[11] 杉内 光輝, 関根 康人, 丹 秀也, 野田 夏実, 高橋 嘉夫, 初期火星における強酸性表層水による表層のAl に富む粘土鉱物形成の可能性, 日本地球化学会 第68回年会 (青森/オンライン, 2021.9, Oral)
[10] 谷口 啓悟, 関根 康人, 小玉 貴則, 野田 夏実, 玄田 英典, 阿部 彩子, 地下水輸送を考慮した陸惑星の大気・水循環に関する理論的研究, Japan Geoscience Union Meeting 2021 (Virtual, 2021.6, Oral)
[9] 佐久間 博, 森田 康暉, 福士 圭介, 高橋 嘉夫, 野田 夏実, 関根 康人, 田村 堅志, 鉄サポナイトの合成と酸化・還元の可逆性, Japan Geoscience Union Meeting 2021 (Virtual, 2021.6, Poster)
[8] Noda N., Sekine Y., Takahashi Y., Sakuma H., Kawai T., Nakagawa M., Kitadai N., Johnson-Finn K. & McGlynn S., The role of ferrous saponite in the formation of sulfur-bearing organic matter, carbon cycles, and climate on early Mars, Japan Geoscience Union Meeting 2021 (Virtual, 2021.6, Oral)
[7] 野田夏実, 関根康人, 丹秀也, 渋谷岳造, 玄田英典, Groundwater upwelling and silica deposition within Gale in (semi-)arid climate on early Mars, 第3回水惑星学全体会議 (高知, 2019.11, Poster)
[6] 野田夏実, 関根康人, 丹秀也, 渋谷岳造, 玄田英典, 初期火星ゲイルクレータ周辺の地下水循環と水-岩石反応の復元, 日本地球惑星科学連合2019年大会 (千葉, 2019.5, Oral)
[5] 野田夏実, 関根康人, 丹秀也, 渋谷岳造, 玄田英典, Groundwater hydrology and water-rock reactions around Gale Crater on early Mars., 惑星圏研究会 (宮城, 2019.2, Oral)
[4] 野田夏実, 関根康人, 丹秀也, 渋谷岳造, 玄田英典, 水循環シミュレーションと室内実験による初期火星Galeクレータ古湖周辺の水循環および水-岩石反応の復元, 日本惑星科学会秋季講演会 (北海道, 2018.10, Oral)
[3] 野田夏実, 関根康人, 丹秀也, 渋谷岳造, 玄田英典, 水循環シミュレーションと室内実験による初期火星Galeクレータ古湖周辺の水循環および水-岩石反応の復元, 日本地球化学会第65回年会 (沖縄, 2018.9, Oral)
[2] 今村翔子, 野田夏実, 関根康人, 上杉宗一郎, 栗栖 美菜子, 宮本千尋, 田畑陽久, 村上隆, 高橋嘉夫, 火星は厚いCO2大気を持っていなかった?マンガン酸化実験から探る初期火星の大気組成, JpGU-AGU JointMeeting 2017 (千葉, 2017.5, Oral)
[1] 野田夏実, 今村翔子, 関根康人, 上杉宗一郎, 栗栖美菜子, 宮本千尋, 田畑陽久, 高橋嘉夫, 村上隆, EXPERIMENTAL STUDY ON MANGANESE OXIDE FORMATION: INTERPRETAION OF MANGANESE OXIDE ON GALE CRATER AND OXIDIZING ENVIRONMENT ON EARLY MARS., JpGU-AGU JointMeeting 2017 (千葉, 2017.5, Oral)