Publications
2022
Thermal conductivity of group-III phosphides: The special case of GaP
B Dongre, J Carrete, N Mingo, GKH Madsen
Physical Review B 106 (20), 205202 2022
Finite temperature dielectric properties of KTaO from first-principles and machine learning: Phonon spectra, Barrett law, strain engineering and electrostriction
QN Meier, N Mingo, A van Roekeghem
arXiv preprint arXiv:2206.08296 1 2022
Site-independent strong phonon-vacancy scattering in high-temperature ceramics
V Sonar, R Dehankar, KP Vijayalakshmi, N Mingo, A Katre
Physical Review Materials 6 (6), 065403 2022
Revisiting Mott's model for the thermopower of alloys with support of density functional theory
M Saint-Cricq, N Mingo, A van Roekeghem
Physical Review B 105 (19), 195128 2022
2021
Effects of impurities on the thermal and electrical transport properties of cubic boron arsenide
X Chen, C Li, Y Xu, A Dolocan, G Seward, A Van Roekeghem, F Tian, ...
Chemistry of Materials 33 (17), 6974-6982 10 2021
Quantum self-consistent ab-initio lattice dynamics
A van Roekeghem, J Carrete, N Mingo
Computer Physics Communications 263, 107945 19 2021
Effects of doping substitutions on the thermal conductivity of half-Heusler compounds
M Fava, B Dongre, J Carrete, A van Roekeghem, GKH Madsen, N Mingo
Physical Review B 103 (17), 174112 5 2021
How dopants limit the ultrahigh thermal conductivity of boron arsenide: a first principles study
M Fava, NH Protik, C Li, NK Ravichandran, J Carrete, A van Roekeghem, ...
npj Computational Materials 7 (1), 54 11 2021
Free energy of ( mixed phases from machine-learning-enhanced ab initio calculations
SK Wallace, AS Bochkarev, A van Roekeghem, J Carrasco, A Shapeev, ...
Physical Review Materials 5 (3), 035402 5 2021
Modeling the high-temperature phase coexistence region of mixed transition metal oxides from ab initio calculations
SK Wallace, A van Roekeghem, AS Bochkarev, J Carrasco, A Shapeev, ...
Physical Review Research 3 (1), 013139 4 2021
2020
High-throughput study of the static dielectric constant at high temperatures in oxide and fluoride cubic perovskites
A van Roekeghem, J Carrete, S Curtarolo, N Mingo
Physical Review Materials 4 (11), 113804 9 2020
Growth, charge and thermal transport of flowered graphene
A Cresti, J Carrete, H Okuno, T Wang, GKH Madsen, N Mingo, P Pochet
Carbon 161, 259-268 5 2020
Combined treatment of phonon scattering by electrons and point defects explains the thermal conductivity reduction in highly-doped Si
B Dongre, J Carrete, S Wen, J Ma, W Li, N Mingo, GKH Madsen
Journal of Materials Chemistry A 8 (3), 1273-1278 16 2020
The AFLOW fleet for materials discovery
C Toher, C Oses, D Hicks, E Gossett, F Rose, P Nath, D Usanmaz, ...
Handbook of Materials Modeling: Methods: Theory and Modeling, 1785-1812 24 2020
2019
Thermal conductivity of crystalline AlN and the influence of atomic-scale defects. Xu, R.L., Muñoz Rojo, M., Islam, S.M., Sood, A., Vareskic, B., Katre, A., Mingo, N., Goodson, K.E., Xing, H.G., Jena, D., et al. Journal of Applied Physics 126, 185105. 2019
Perspective on ab initio phonon thermal transport. L. Lindsay, A. Katre, A. Cepellotti, and N. Mingo, Journal of Applied Physics, vol. ADVTHRM2019, no. 1, p. 050902, Aug. 2019.
Coupling of Spinons with Defects and Phonons in the Spin Chain Compound Ca2CuO3 . Chen, X., Carrete, J., Sullivan, S., van Roekeghem, A., Li, Z., Li, X., Zhou, J., Mingo, N., and Shi, L. Phys. Rev. Lett. 122, 185901. 2019
Phonon transport across crystal-phase interfaces and twin boundaries in semiconducting nanowires. Carrete, J., López-Suárez, M., Raya-Moreno, M., Bochkarev, A.S., Royo, M., Madsen, G.K.H., Cartoixà, X., Mingo, N., and Rurali, R. Nanoscale 11, 16007–16016. 2019
Anharmonic thermodynamics of vacancies using a neural network potential. A. S. Bochkarev, A. van Roekeghem, S. Mossa, and N. Mingo, Phys. Rev. Materials, vol. 3, no. 9, p. 093803, 2019.
Thermal Resistance of GaAs/AlAs Graded Interfaces. A van Roekeghem, B Vermeersch, J Carrete, N Mingo. Physical Review Applied 11 (3), 034036, 2019.
Phonon Scattering by Dislocations in GaN . Wang, T., Carrete, J., Mingo, N., and Madsen, G.K.H. ACS Appl. Mater. Interfaces 11, 8175–8181. 2019.
An investigation of the structural properties of Li and Na fast ion conductors using high-throughput bond-valence calculations and machine learning. Katcho, N.A., Carrete, J., Reynaud, M., Rousse, G., Casas-Cabanas, M., Mingo, N., Rodríguez-Carvajal, J., and Carrasco, J. Journal of Applied Crystallography 52 (1), 148-157. 2019.
2018
Heat conduction measurements in ballistic 1D phonon waveguides indicate breakdown of the thermal conductance quantization. A Tavakoli, K Lulla, T Crozes, N Mingo, E Collin, O Bourgeois. Nature communications 9 (1), 4287 1, 2018
Vibrational properties of metastable polymorph structures by machine learning. F Legrain, A van Roekeghem, S Curtarolo, J Carrete, GKH Madsen, N. Mingo. Journal of Chemical Information and Modeling 58 (12), 2460-2466 3, 2018
AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. E Gossett, C Toher, C Oses, O Isayev, F Legrain, F Rose, E Zurek, ... Computational Materials Science 152, 134-145 11 2018
First-principles quantitative prediction of the lattice thermal conductivity in random semiconductor alloys: The role of force-constant disorder, M Arrigoni, J Carrete, N Mingo, GKH Madsen. Physical Review B 98 (11), 115205 4, 2018
Ab initio lattice thermal conductivity of bulk and thin-film α-Al2O3. B Dongre, J Carrete, N Mingo, GKH Madsen. MRS Communications 8 (3), 1119-1123 2018
Phonon transport unveils the prevalent point defects in GaN. A Katre, J Carrete, T Wang, GKH Madsen, N Mingo. Physical Review Materials 2 (5), 050602
Influence of point defects on the thermal conductivity in FeSi. R Stern, T Wang, J Carrete, N Mingo, GKH Madsen. Physical Review B 97 (19), 195201 9, 2018
Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity. J Carrete, B Vermeersch, L Thumfart, RR Kakodkar, G Trevisi, P Frigeri, A. Rastelli, and N. Mingo. The Journal of Physical Chemistry C 122 (7), 4054-4062 7 , 2018
Resonant phonon scattering in semiconductors. B Dongre, J Carrete, A Katre, N Mingo, GKH Madsen. Journal of Materials Chemistry C 6 (17), 4691-4697 5, 2018
Independently tuning the power factor and thermal conductivity of SnSe via Ag 2 S addition and nanostructuring. Y Zhu, J Carrete, QL Meng, Z Huang, N Mingo, P Jiang, X Bao. Journal of Materials Chemistry A 6 (17), 7959-7966 4, 2018
The AFLOW fleet for materials discovery. C Toher, C Oses, D Hicks, E Gossett, F Rose, P Nath, D Usanmaz, ... Handbook of Materials Modeling: Methods: Theory and Modeling, 1-28 3, 2018
2017
"Glass-like thermal conductivity in nanostructures of a complex anisotropic crystal." A Weathers, J Carrete, JP DeGrave, JM Higgins, AL Moore, J Kim, ... Physical Review B 96 (21), 214202 2 2017
"Thermal transport through Ge-rich Ge/Si superlattices grown on Ge (0 0 1)." L Thumfart, J Carrete, B Vermeersch, N Ye, T Truglas, J Feser, H Groiss, ... Journal of Physics D: Applied Physics 51 (1), 014001 5
"Predictive design and experimental realization of InAs/GaAs superlattices with tailored thermal conductivity." J. Carrete, B. Vermeersch, L. Thumfart, R. R. Kakodkar, G. Trevisi, P. Frigeri, L. Seravalli, J. P. Feser, A. Rastelli, and N. Mingo. Submitted.
"Quasiballistic heat removal from small sources studied from first principles." Bjorn Vermeersch and Natalio Mingo. Submitted.
"Thermal transport through Ge-rich Ge/Si superlattices grown on Ge(001)". Thumfart, Lukas; Carrete, Jesús; Vermeersch, Bjorn; Ye, Ning; Truglas, Tia; Feser, Joseph; Groiss, Heiko; Mingo, Natalio; Rastelli, Armando, Journal of Physics D: Applied Physics (accepted, 2017).
“Exceptionally Strong Phonon Scattering by B Substitution in Cubic SiC.” Katre, Ankita, Jesús Carrete, Bonny Dongre, Georg K. H. Madsen, and Natalio Mingo. Physical Review Letters, 119, 75902 (2017).
“How the Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids,” F. Legrain, J. Carrete, A. van Roekeghem, S. Curtarolo, and N. Mingo, Chemistry of Materials, DOI: 10.1021/acs.chemmater.7b00789 (2017).
“Human immune protein selectively disaggregates carbon nanotubes.” M. Saint Cricq, J. Carrete, C. Gaboriaud, E. Gravel, E. Doris, N. Thielens, N. Mingo, and W. L. Ling, Nano Letters, 17 (6), pp 3409–3415 (2017).
"Materials Screening for the Discovery of New Half-Heuslers: Machine Learning Versus Ab Initio Methods", Fleur Legrain, Jesus Carrete, Ambroise van Roekeghem, Georg K.H. Madsen, and Natalio Mingo, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.7b05296
"AlmaBTE: an ab-initio solver of the space-dependent phonon Boltzmann Transport Equation." Carrete, J.; Vermeersch, B.; Katre, A.; van Roekeghem, A.; Wang, T.; Madsen, G. K. H.; Mingo, N. Computer Physics Communications.
"Ab initio phonon scattering by dislocations". Tao Wang, Jesus Carette, Ambroise van Roekeghem, Natalio Mingo, Georg K. H. Madsen, Phys. Rev. B 95, 245304 (2017).
“Structural Complexity and Phonon Physics in 2D Arsenenes.” Carrete, Jesús, Luis J. Gallego, and Natalio Mingo. The Journal of Physical Chemistry Letters, March 12, 2017, 1375–80. doi:10.1021/acs.jpclett.7b00366.
"Influence of antisite defects on the thermoelectric properties of Fe2VAl", Subrahmanyam Bandaru, Ankita Katre, Jesús Carrete, Natalio Mingo, and Philippe Jund, Nanoscale and Microscale Thermophysical Engineering, accepted (2017). doi.org/10.1080/15567265.2017.1355948
"Phonon thermal transport in 2H, 4H and 6H silicon carbide from first principles." Nakib Haider Protik, Ankita Katre, Lucas Lindsay, Jesús Carrete, Natalio Mingo, David Broido. Materials Today Physics, 1C, 31-38. 2017
“Influence of the Addition of HfO2 Particles on the Thermoelectric Properties of an N-Type Half-Heusler Alloy Sintered by Spark Plasma Sintering.” Visconti, Alizée, Christelle Navone, Jean Leforestier, Natalio Mingo, and Guillaume Bernard-Granger. Journal of Alloys and Compounds 709 (June 30, 2017): 36–41. doi:10.1016/j.jallcom.2017.03.119.
2016
Smith, Brandon, Bjorn Vermeersch, Jesús Carrete, Eric Ou, Jaehyun Kim, Natalio Mingo, Deji Akinwande, and Li Shi. “Temperature and Thickness Dependences of the Anisotropic In-Plane Thermal Conductivity of Black Phosphorus.” Advanced Materials, November 1, 2016. doi:10.1002/adma.201603756.
A. van Roekeghem, “High-Throughput Computation of Thermal Conductivity of High-Temperature Solid Phases: The Case of Oxide and Fluoride Perovskites,” Phys. Rev. X, vol. 6, no. 4, 2016.
A. Visconti, G. Bernard-Granger, C. Navone, J. Leforestier, and N. Mingo, “Microstructure investigations and thermoelectric properties of an N-type Half-Heusler alloy sintered by spark plasma sintering,” Scripta Materialia, vol. 123, pp. 100–104, Oct. 2016.
J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, “Physically founded phonon dispersions of few-layer materials and the case of borophene,” Materials Research Letters, vol. 4, no. 4, pp. 204–211, Oct. 2016.
Coloyan, Gabriella, Nicholas D. Cultrara, Ankita Katre, Jesús Carrete, Matt Heine, Eric Ou, Jaehyun Kim, et al. “Basal-Plane Thermal Conductivity of Nanocrystalline and Amorphized Thin Germanane.” Applied Physics Letters 109, no. 13 (September 26, 2016): 131907. doi:10.1063/1.4963704.
N. H. Protik, J. Carrete, N. A. Katcho, N. Mingo, and D. Broido, “Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide,” Phys. Rev. B, vol. 94, no. 4, p. 45207, Jul. 2016.
A. van Roekeghem, J. Carrete, and N. Mingo, “Anomalous thermal conductivity and suppression of negative thermal expansion in ScF3,” Phys. Rev. B, vol. 94, no. 2, p. 20303, Jul. 2016.
W. Li, J. Carrete, G. K. H. Madsen, and N. Mingo, “Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity,” Phys. Rev. B, vol. 93, no. 20, p. 205203, May 2016.
B. Vermeersch, J. Carrete, and N. Mingo, “Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates,” Applied Physics Letters, vol. 108, no. 19, p. 193104, May 2016.
Katre, A., Carrete, J., and Mingo, N. (2016). Unraveling the dominant phonon scattering mechanism in the thermoelectric compound ZrNiSn. J. Mater. Chem. A 4, 15940–15944.
Chen, Peixuan, Tanja Etzelstorfer, Florian Hackl, Nebil A. Katcho, Hung-Tai Chang, Lukas Nausner, Sheng-Wei Lee, et al. “Evolution of Thermal, Structural, and Optical Properties of SiGe Superlattices upon Thermal Treatment.” Physica Status Solidi (a) 213, no. 3 (March 1, 2016): 533–40. doi:10.1002/pssa.201532468.
2015
Chen, Xi, Annie Weathers, Jesús Carrete, Saikat Mukhopadhyay, Olivier Delaire, Derek A. Stewart, Natalio Mingo, et al. “Twisting Phonons in Complex Crystals with Quasi-One-Dimensional Substructures.” Nature Communications 6 (April 15, 2015): 6723. doi:10.1038/ncomms7723.
W Li, N Mingo, "Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe 4 Sb 12 due to the flat avoided-crossing filler modes", Physical Review B 91 (14), 144304 (2015).
Anomalous pressure dependence of thermal conductivities of large mass ratio compounds, L Lindsay, DA Broido, J Carrete, N Mingo, TL Reinecke, Physical Review B 91 (12), 121202 (2015).
Bjorn Vermeersch, Jesus Carrete, Natalio Mingo, and Ali Shakouri, Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations, Physical Review B 91, 085202 (2015)
2014
J Sjakste, I Timrov, P Gava, N Mingo, N Vast, Annual Rev. Heat Transfer 17, 333-383 (2014) First-principles calculations of electron-phonon scattering
N. Mingo, D. A. Stewart, D. A. Broido, L. Lindsay, and W. Li, in Length-Scale Dependent Phonon Interactions, pp. 137-173, Springer (2014), DOI: 10.1007/978-1-4614-8651-0_5. Ab-initio Thermal Transport.
W Li, N Mingo, Physical Review B 90 (9), 094302 (2014). Lattice dynamics and thermal conductivity of skutterudites CoSb 3 and IrSb 3 from first principles: Why IrSb 3 is a better thermal conductor than CoSb 3
Wu Li and Natalio Mingo, Phys. Rev. B 89, 184304 (2014). Thermal conductivity of fully filled skutterudites: Role of the filler
NA Katcho, J Carrete, W Li, N Mingo, Physical Review B 90 (9), 094117 (2014)
J Carrete, N Mingo, S Curtarolo, Applied Physics Letters 105 (10), 101907 (2014)
Low thermal conductivity and triaxial phononic anisotropy of SnSe
J Carrete, N Mingo, S Wang, S Curtarolo
Advanced Functional Materials, 24, 7427–7432 (2014).
L. Lindsay, Wu Li, Jesús Carrete, Natalio Mingo, D. A. Broido, and T. L. Reinecke
Phys. Rev. B 89, 155426 (2014).
Phonon thermal transport in strained and unstrained graphene from first principles
Wu Li, Jesús Carrete, Nebil A. Katcho, and Natalio Mingo
Computer Physics Communications 185 (6), 1747-1758 (2014),
ShengBTE: A solver of the Boltzmann transport equation for phonons
Jesús Carrete, Wu Li, Natalio Mingo, Shidong Wang, and Stefano Curtarolo
Phys. Rev. X 4, 011019 (2014)
2013
W Li, J Carrete, N Mingo
Applied Physics Letters 103 (25), 253103 (2013).
Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles
W Li, N Mingo
Journal of Applied Physics 114 (18), 183505 (2013).
Thermal conductivity of bulk and nanowire InAs, AlN, and BeO polymorphs from first principles
CA da Cruz, NA Katcho, N Mingo, RGA Veiga
Journal of Applied Physics 114 (16), 164310 (2013).
Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations
P Chen, NA Katcho, JP Feser, W Li, M Glaser, OG Schmidt, DG Cahill, N Mingo ...
Physical Review Letters 111 (11), 115901 (2013).
Role of Surface-Segregation-Driven Intermixing on the Thermal Transport through Planar Si/Ge Superlattices
W Li, N Mingo
Journal of Applied Physics 114 (5), 054307 (2013).
Alloy enhanced anisotropy in the thermal conductivity of SixGe1− x nanowires
S. Curtarolo, G. L. W. Hart, M. Buongiorno Nardelli, N. Mingo, S. Sanvito, and O. Levy,
Nature Materials, 12 (3), 191-201 (2013)
The high-throughput highway to computational materials design
Before 2013
83. W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, and N. Mingo,
Phys. Rev. B 86, 174307 (2012)
Thermal conductivity of bulk and nanowire Mg2SiSn alloys from first principles
82. Y. Chalopin, N. Mingo, J. Diao, D. Srivastava, and S. Volz, Appl. Phys. Lett., 101, 221903 (2012)
Large effects of pressure induced inelastic channels on interface thermal conductance
81. T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N. A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N. Browning and S. M. Kauzlarich, J. Mater. Chem. 22, 24805 (2012)
Synthesis and characterization of Mg2Si/Si nanocomposites prepared from MgH2 and silicon and the thermoelectric properties
80. C. Abs da Cruz, W. Li, N. A. Katcho, and N. Mingo
Appl. Phys. Lett. 101, 083108 (2012)
Role of phonon anharmonicity in time-domain thermoreflectance measurements
79. S. Curtarolo, W. Setyawan, S. D. Wang, J. K. Xue, K. S. Yang, R. H. Taylor, L. J. Nelson, G. L. W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, and O. Levy
Comp. Mat. Sci. 58, 227 (2012)
AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
78. J. Carrete, N. Mingo, G. J. Tian, H. Agren, A. Baev, and P. N. Prasad,
J. Phys. Chem. C, 116, 10881 (2012)
Thermoelectric Properties of Hybrid Organic-Inorganic Superlattices
77. W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho,
Phys. Rev. B, 85, 195436 (2012)
Thermal conductivity of diamond nanowires from first principles
76. N. A. Katcho, N. Mingo, and D. A. Broido,
Phys. Rev. B, 85, 115208 (2012)
Lattice thermal conductivity of (Bi1-xSbx)(2)Te-3 alloys with embedded nanoparticles
75. H. Sevinçli, W. Li, N. Mingo. G. Cuniberti, and S. Roche,
Phys. Rev. B, 84, 205444 (2011)
Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets
74. S. Wang, Z. Wang, W. Setyawan, Natalio Mingo, and S. Curtarolo,
Phys. Rev. X 1, 021012 (2011)
Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations
73. A. Kundu, N. Mingo, D. A. Broido, and D. A. Stewart,
Phys. Rev. B, 84, 125426 (2011)
The role of lighter and heavier embedded nanoparticles on the thermal conductivity of SiGe alloys
72. J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo,
Phys. Rev. B, 84, 075403 (2011).
Surface roughness and thermal conductivity of semiconductor nanowires: going below the Casimir limit,
71., Zhao Wang and Natalio Mingo,
Appl. Phys. Lett., 99, 101903 (2011).
Absence of Casimir regime in 2D nanoribbon phonon conduction
70. L. Lindsay, D. A. Broido, and Natalio Mingo,
Phys. Rev. B, 83, 235428 (2011).
Flexural phonons and thermal transport in multilayer graphene and graphite.
69. Feng Zhou, Arden L. Moore, J. Bolinsson, A. Persson, L. Fröberg, M. T. Pettes, Huijun Kong, L. Rabenberg, Philippe Caroff, Derek A. Stewart, Natalio Mingo, Kimberly A. Dick, Lars Samuelson, Heiner Linke, and Li Shi, Phys. Rev. B, 83, 205416 (2011).
Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases
68. Zhao Wang, Shidong Wang, Sergey Obukhov, Nathalie Vast, Jelena Sjakste, Valery Tyuterev, and Natalio Mingo,
Phys. Rev. B 83, 205208 (2011).
Thermoelectric transport properties of silicon: Towards an ab initio approach
67. C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and Natalio Mingo,
J. Appl. Phys. 108, 124306 (2010).
Thermoelectric properties of nanostructured Si1−xGex and potential for further improvement
66. Jean-Savin Heron, Chandan Bera, Thierry Fournier, Natalio Mingo, and Olivier Bourgeois
Phys. Rev. B 82, 155458 (2010) .
Blocking phonons via nanoscale geometrical design
65. L. Lindsay, D. A. Broido, and Natalio Mingo
Phys. Rev. B 82, 161402 (2010).
Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit
64. L. Lindsay, D. A. Broido, and Natalio Mingo
Phys. Rev. B 82, 115427 (2010).
Flexural phonons and thermal transport in graphene
63. Zhao Wang and Natalio Mingo
Appl. Phys. Lett. 97, 101903 (2010).
Diameter dependence of SiGe nanowire thermal conductivity
62. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Monch, Ch. Deneke, O.G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo,
Nature Materials, 9, 491 (2010).
Precise control of thermal conductivity at the nanoscale via individual phonon barriers.
61. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi,
Science, 328, 213 (2010).
Two-Dimensional Phonon Transport in Supported Graphene.
60. C. Bera, N. Mingo, and S. Volz,
Phys. Rev. Lett., 104, 115502 (2010).
Marked effects of alloying on the thermal conductivity of nanoporous materials.
59. N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart,
Phys. Rev. B, 81, 045408 (2010).
“Cluster” isotope effects on phonon conduction: the case of graphene.
N. Mingo, in Thermal Nanosystems and Nanomaterials, Topics in Applied Physics Series, 111, 63-94, Springer (2009). DOI: 10.1007/978-3-642-04258-4_3. Phonon transport through nano-contacts by Green’s function methods.
58. L. Lindsay, D.A. Broido, and Natalio Mingo, Phys. Rev. B 80, 125407 (2009).
Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules
57. Gabriel Stoltz, Natalio Mingo, and Francesco Mauri, Phys. Rev. B 80, 113408 (2009).
Reducing the thermal conductivity of carbon nanotubes below the random isotope limit.
56. M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo, and S. Volz. Adv. Mat., 22, 1654 (2009).
Carbon Nanotube MicroArchitecture for Enhanced Thermal Conduction at Ultra-Low Mass Fraction in Composite Materials.
55. S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).
Improved thermoelectric properties of Mg2SixGeySn1-x-y nanoparticle in alloy materials.
54. D. A. Broido, N. Mingo, and D. A. Stewart, IMECE 2008-67049 (2008).
Phonon thermal transport in bulk and nanostructured materials from first principles..
53. J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano Letters 9, 1861 (2009).
Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire.
52. Y. Chalopin, S. Volz, and N. Mingo, Journal of Applied Physics, 105, 084301 (2009).
Interface heat transfer between crossing carbon nanotubes, and the thermal conductivity of nanotube pellets.
51. R. S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, L. F. Cleri, and P. Keblinski, Phys. Rev. Lett., 102, 105901 (2009).
Turning carbon nanotubes from exceptional heat conductors into insulators.
50. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Letters 9, 711 (2009).
The nanoparticle in alloy approach to efficient thermoelectrics: silicides in SiGe.
49. S. Wang and N. Mingo, Phys. Rev. B, 79, 115316 (2009).
Effects of interface roughness and superlattice period length on thermoelectric electron filtering.
48. D. A. Stewart, I. Savic, and N. Mingo, Nano Letters, 9, 81 (2009).
First-Principles Calculation of the Magnitude of the Isotope Effect on Boron Nitride
Nanotube Thermal Conductivity.
47. I. Savic, D. A. Stewart, and N. Mingo, Physical Review B, 78 235434 (2008).
Thermal conduction mechanisms in boron nitride nanotubes: few-shell or all-shell?
46. I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008).
Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable?
45. N. Mingo, D. A. Stewart, D. A. Broido, and D. Srivastava, Phys. Rev. B 77, 033418 (2008).
Phonon transmission through defects in carbon nanotubes from first principles.
44. D. A. Broido, M. Malorny, G. Birner, Natalio Mingo, D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).
Intrinsic lattice thermal conductivity of semiconductors from first principles.
43. S. De Franceschi and N. Mingo, Nature Nanotechnology 2, 538 (2007).
Cooling electrons one by one.
42. W. Zhang, N. Mingo, and T. S. Fisher, Phys. Rev. B, 76, 195429 (2007).
Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green's function method.
41. N. Mingo and D. A. Broido, J. Appl. Phys., 101, 014322 (2007).
Thermoelectric power factor of nano-porous semiconductors.
40. J. H. Seol, A. L. Moore, S. K. Saha, F. Zhou, L. Shi, Q. Ye, R. Scheffler, N. Mingo, and T.
Yamada, J. Appl. Phys. 101, 023706 (2007).
Measurement and analysis of thermopower and electrical conductivity of an indium
antimonide nanowire from a vapor-liquid-solid method.
39. W. Zhang, N. Mingo, and T. S. Fisher, Numerical Heat Transfer, 51, 333 (2007).
The Atomistic Green’s Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport.
38. W. Zhang, N. Mingo, and T. S. Fisher, Journal of Heat Transfer, 129, 483, (2007).
Simulation of interfacial phonon transport in Si-Ge heterostructures using an atomistic Green’s function method.
37. D. A. Broido and N. Mingo, Phys. Rev. B 74, 195325 (2006).
Theory of the thermoelectric power factor in nanowire nanocomposite matrix structures.
36. N. Mingo, Phys. Rev. B, 74, 125402 (2006).
Anharmonic phonon transport through molecular-sized junctions.
35. N. Mingo and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).
Carbon nanotube ballistic thermal conductance, and its limits.
34. D. A. Broido, A. Ward, and N. Mingo, Phys. Rev. B 72, 014308 (2005).
Lattice thermal conductivity of silicon from empirical interatomic potentials
33. N. Mingo and D. A. Broido, Nano Letters 5, 1221 (2005).
Length dependence of carbon nanotube thermal conductivity, and the “problem of long waves”.
32. N. Mingo and D. A. Broido, Phys. Rev. Lett. 93, 246106 (2004).
Lattice thermal conductivity crossovers in semiconductor nanowires
31. N. Mingo, Appl. Phys. Lett. 85, 5986 (2004).
Thermoelectric figure of merit of II-VI semiconducting nanowires
30. N. Mingo, Appl. Phys. Lett. 84, 2652 (2004).
Thermoelectric figure of merit and maximum power factor of III-V semiconducting nanowires
29. L. Shi., Q. Hao, Ch. Yu, N. Mingo, X. Kong, and Z. L. Wang, Appl. Phys. Lett. 84, 2638 (2004).
Thermal conductivities of individual tin dioxide nanobelts
28. N. Mingo, Phys. Rev. B 68, 113308 (2003).
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
27. N. Mingo and Liu Yang, Phys. Rev. B 68, 245406 (2003); also Phys. Rev. B 70, 249901.
Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach
26. N. Mingo, L. Yang, D. Li, and A. Majumdar, Nano Letters 3, 1713 (2003).
Predicting the thermal conductivity of Si and Ge nanowires
25. N. Mingo, Q. Hao, Ch. Yoon, and L. Shi, IEEE-nano proceedings, 2, 259 (2003).
Theoretical analysis of SnO2 nanobelt thermal conductivity
24. C. W. Bauschlicher, A. Ricca, N. Mingo, and J. Lawson, Chem. Phys. Lett. 372 (2003) 723.
On the current flow for benzene-1,4-dithiol between two Au contacts
23. K. Makoshi, N. Mingo, Surface Science, 502-503 (2002) 34.
Theory of inelastic scanning tunneling spectroscopy
22. N. Mingo and Jie Han, Phys. Rev. B (rapid communications) , 64, 201401/1-4 (2001).
Conductance of metallic carbon nanotubes dipped into metal
21. N. Mingo, Liu Yang and Jie Han, J. Phys. Chem. B, 105, 11142 (2001).
Current induced forces upon atoms adsorbed on conducting carbon nanotubes
20. S. Tikhodeev, Mingo N., K. Makoshi, T. Mii, and H. Ueba, Surf. Sci. 493, 63 (2001).
Contribution to a theory of vibrational scanning tunneling spectroscopy of adsorbates. Nonequilibrium Green's function approach
19. K. Makoshi, N. Mingo, T. Mii, H. Ueba and S. Tikhodeev, Surf. Sci. 493, 71-77 (2001). Theory of vibrational excitations of adsorbates by the scanning tunneling spectroscopy
18. N. Mingo, Liu Yang, Jie Han and M.P.Anantram, Phys. Stat. Sol. B, 226, 79-85 (2001).
Resonant versus anti-resonant tunneling at carbon nanotube A-B-A heterostructures
17. N.Mingo, J.Han, M.P.Anantram and L.Yang, Surf. Sci., 482-485, 1130-4 (2001).
Potential drop along carbon nanotube devices with current flow
16. N.Mingo, K.Makoshi, T.Mii and H.Ueba, Surface Science , 482-485, 96 (2001).
Theory of the relation between Inelastic Scanning Tunneling Spectroscopy of adsorbates and their vibrational deexcitation
15. N.Mingo and K.Makoshi, Phys. Rev. Lett. 84 (2000) 3694.
Calculation of the Inelastic Scanning Tunneling Image of Acetylene on Cu(100)
14. N. Mingo and K. Makoshi, Applied Surface Science,162-163(2000)227-232.
Calculation of Scanning Inelastic Tunneling Profiles of Adsorbates: acetylene on Cu(100)
13. N. Mingo and K. Makoshi, Surface Science 438(1999)261-270.,
Excitation of vibrational modes of adsorbates with the Scanning Tunneling Microscope: many orbital theory
12. L. Jurczyszyn, N. Mingo and F. Flores, Surface Science, Volumes 402-404, (1998) 459-463. Influence of the atomic and electronic structure of the tip on STM images and STS spectra
11. N. Mingo and F. Flores, Thin Solid Films 318 (1998), 69-72.
Theoretical study of the electric field manipulation of adsorbates using a Scanning Tunnelling Microscope
10. N. Mingo, M. Rose and M. Salmeron, Journal of Surface Analysis, Vol. 3, No. 2 (1998).
STM induced rotation of acetylene molecules adsorbed on Pd(111)
9. N. Mingo and F. Flores, Surface Science, volume 395, nos. 2 and 3 (1998).
Lateral forces and atomic desorption induced by the electric field created by STM tips on metal surfaces
8. A.L. Vazquez de Parga, O.S. Hernan, R. Miranda, A. Levy-Yeyati, N. Mingo and F. Flores, Phys. Rev. Lett., (1998), vol. 80 (no. 2) 357-60.
Electron resonances in sharp tips and their role in tunneling spectroscopy
7. L. Jurczyszyn, N. Mingo and F. Flores, Czech. J. of Phys. Vol 47 (1997), No.4 p.407-413.
The influence of the geometry of the tip on STM images
6. N. Mingo and Z. Knor, Chemical Physics Letters 263 (1996) 8.
Trigonal images of transition metal atoms adsorbed on transition metal FCC (111) surfaces and their availability for Scanning Tunneling Microscope
5. C.Sirvent, S.Vieira, L.Jurczyszyn, N.Mingo and F.Flores Phys. Rev. B, 53 (1996) 16086.
Conductance step for a single atom contact at the STM: noble and transition metals
4. L. Jurczyszyn, N. Mingo and F.Flores, Mat. Sci. and Engeneering B 37 (1996) 93.
Conductance Simulation through Single Atom Junctions at the Scanning Tunnelling Microscope
3. N. Mingo et al., Phys. Rev. B, 54 (1996) 2225.
Theory of the STM: Xe on Ni and Al
2. F.Flores, P.L.de Andres, F.J.Garcia-Vidal, L.Jurczyszyn, N.Mingo and R.Perez. Progress in Surface Science, Vol.48, Nos.1-4, pp27-38, 1995.
Adsorption of noble gases on metal surfaces and the scanning tunneling microscope
1. N.Mingo, J.A.Porto and J.Sanchez-Dehesa, Phys. Rev. B, 50, 11884-11894 (1994).
Doping-profile effects on the tunneling times of electrons confined in double-barrier heterostructures