Publications

34. Baliarsingh, B.; Madhavan, N. One-Pot Synthesis of Diverse Anion-Binding Macrocycles. SynLett, 2024, 35, A-E.

https://doi.org/10.1055/a-2320-7919 

33. Kumar, N.; Madhavan, N. Small molecule derived pH-gated ion transporters, Org. Biomol. Chem. 2023,21, 5892-5905 . https://doi.org/10.1039/D3OB00496A 

32. Kar, S.; Madhavan, N., An Amphiphilic Peptide Carrier for HCl Transport, Chem. Eur.  J. 2023, 29, e202301020.  https://doi.org/10.1002/chem.202301020

 31.  Hale, U. A.; Madhavan, N., Hydrophobic Cyclic Dipeptides as M⁺/Cl‾ Carriers, Chem. Commun. 2023, 59, 7068-7071. https://doi.org/10.1039/D3CC02132G.


30. Saha, P.; Basak, D.; Biswas, S.; More, P. A.; Madhavan, N. Small Peptidic Ionophore for Calcium Transport, Bioconjug. Chem. 2022, 33, 2143-2148  https://doi.org/10.1021/acs.bioconjchem.2c00396

 

29. Hale, U.A.; Potnuru, M.; Madhavan, N., Carboxylated Nanospheres Using Cyclic Dipeptides as Removable Templates for Cation Binding, ACS Appl. Nano Mater. 2022,5, 4, 5356–5363  https://doi.org/10.1021/acsanm.2c00353 

 

28.Bisht, B.; Madhavan, N. Quick Access to High Purity Peptide Drugs Bradykinin, Leuoprolide, Rapastinel with Minimal Reagent, J. Org. Chem. 2021, 86, 17667-17672  https://doi.org/10.1021/acs.joc.1c01906

 

27. Saha, P.; Agarwala, P. K.; Dadhich, R.; Adhyapak, P.; Kapoor, S.; Madhavan, N.  Ligand Induced Cu(II) Transport restricts Cancer and Mycobacterial Growth: Towards a PlugandSelect Ion Channel Scaffold, ChemBioChem 2021, 22, 1424-1429  https://doi.org/10.1002/cbic.202000731 


26. B. P.; Behera, H., Madhavan, N. Low Molecular Weight Dito Tetrapeptide Transmembrane Cation Transporters, Eur. J. Org. Chem. 2020, 44, 6898-6902  https://doi.org/10.1002/ejoc.202000686 


25. Saha, P; Madhavan, N. Macrocyclic Transmembrane Anion Transporters via a One-Pot Condensation Reaction, Organic Lett. 2020, 22, 5104-5108  https://doi.org/10.1021/acs.orglett.0c01699 


24. Erapalapati, V.; Hale, U. H.; Madhavan, N. Phosphorus pentoxide for amide and peptide bond formation with minimal by-products, Tetrahedron Lett. 2019, 60, 151311; Highlighted in Synfactshttps://doi.org/10.1016/j.tetlet.2019.151311 


23. Bisht, B.; Naganna, N.; Madhavan, N. A rink-amide soluble support: high purity conotoxins and other peptides accessed with minimal reagents, Org. Biomol. Chem. 2019, 17, 7238-7246.  https://pubs.rsc.org/en/content/articlelanding/2019/ob/c9ob01214a 

22. Basak, D.; Saha, P.; Madhavan, N. Basic Design Elements for Tunable Cation Transport Using PicolinicAcid Incorporated Tetrapeptides, ChemistrySelect  2018, 3, 9731-9735.   https://doi.org/10.1002/slct.201801612 

21. Behera, H.; Madhavan, N. Anion-selective cholesterol decorated macrocyclic transmembrane ion carriers, J. Am. Chem. Soc. 2017, 139, 12919–12922. Highlighted in JACS Young Investigators Virtual Issue 2018.  https://doi.org/10.1021/jacs.7b07479 

20. Behera, H.; Ramkumar, V.; Madhavan, N. Triamide macrocyclic chloride receptors via a one-pot tandem reduction–condensation–cyclization reaction, Org. Biomol. Chem. 2017, 15, 4937-4940.  https://doi.org/10.1039/C7OB00642J 

19. Basak, D.; Sridhar, S.; Bera, A. K.; Madhavan, N. A minimalistic tetrapeptide amphiphile scaffold for transmembrane pores with a preference for sodium, Bioorg. Med. Chem. Lett. 2017, 27, 2886-2889.  https://doi.org/10.1016/j.bmcl.2017.04.081 

18. Basak, D.; Sridhar, S.; Bera, A. K.; Madhavan, N. Cation–halide transport through peptide pores containing aminopicolinic acid, Org. Biomol. Chem. 2016, 14, 4712 – 4717.  https://doi.org/10.1039/C6OB00592F 

17. Potnuru, M.; Madhavan, N. Robust Carboxylated Polymer Pores from a Cyclic Peptide Template, Polym. Chem. 2016, 7, 31-35.  https://doi.org/10.1039/C5PY01313E 

16. Rajeev, A.; Erapalapati, V.; Madhavan, N.; Basavaraj, M. G. Conversion of expanded polystyrene waste to nanoparticles via nanoprecipitation, J. Appl. Polym. Sci. 2016, 133, 42904.  https://doi.org/10.1002/app.42904 

15. Naganna, N.; Madhavan, N. An Improved Soluble Polynorbornene Support for Peptide Synthesis, RSC Adv., 2015, 5, 93027-93031.  https://doi.org/10.1039/C5RA21668K 

14. Erapalapati, V; Madhavan, N. Versatile Soluble Oligomeric Styrene Supports for Peptide Synthesis, J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2501.  https://doi.org/10.1002/pola.27714 

13. Behera, H.; Ramkumar, V.; Madhavan, N. Cation Transporting Peptides: Scaffolds for Functionalized Pores, Chem.Eur. J.  2015, 21, 10179–10184.  https://doi.org/10.1002/chem.201500881 

12.Benke, B. P.; Madhavan, N. Aminobenzoic Acid Incorporated Octapeptides for Cation Transport, Bioorg. Med. Chem. 2015, 23, 1413-1420.  https://doi.org/10.1016/j.bmc.2015.02.031 

11. Naganna, N.; Madhavan, N. Soluble Non-Crosslinked Poly(norbornene) Supports for Peptide Synthesis with Minimal Reagents,  J. Org. Chem. 2014, 79, 11549-11557.  https://doi.org/10.1021/jo502197n 

10. Parashar, A.; Gade, S. K.; Potnuru, M.; Madhavan, N.; Manoj, K. M.  PLoS One. 2014, 9, e89967https://doi.org/10.1371/journal.pone.0089967 

9. Naganna, N.; Madhavan, N. Soluble & Reusable Poly(norbornene) Supports with High Loading Capacities for Peptide Synthesis, Org. Lett. 2013, 15, 5870-5873.  https://doi.org/10.1021/ol4029435 

8. Benke, B. P.; Madhavan, N. Active Ion Transporters from Readily Accessible Acyclic Octapeptides containing 3-Aminobenzoic Acid & Alanine, Chem. Commun. 2013, 49, 7340-734.  https://doi.org/10.1039/C3CC44224A  


Ph.D. and Post-doctoral Work

7. Madhavan, N.; Sommer, W.; Weck, M. Supporting Multiple Organometallic Catalysts on Poly(norbornene) for Cyanide Addition to Unsaturated Imides, J. Mol. Cat. A :Chem. 2011, 334, 1-7. Editor’s choice paper.  http://dx.doi.org/10.1016/j.molcata.2010.10.023 

6. Madhavan, N.; Takatani, T.; Sherrill, C. D.; Weck, M. Macrocyclic Cyclooctene Supported Salen(AlCl) Catalysts for Conjugated Addition Reactions: Effect of Linker and Support-structure on Catalysis, Chem. Eur. J. 2009, 15, 1186.  https://doi.org/10.1002/chem.200801611 

5. Madhavan, N.; Jones, C. W.; Weck, M. Rational Approach to Polymer Supported Catalysts: Synergy between Catalytic Reaction Mechanism and Polymer Design, Acc. Chem. Res.  2008, 41, 1153.  https://doi.org/10.1021/ar800081y 

4. Madhavan, N.; Weck, M. Highly Active Polymer Supported Salen(Al) Catalysts for the Enantio selective Addition of Cyanide to a,b-Unsaturated Imides, Adv. Synth. Catal. 2008, 350, 419.  Highlighted in Synfacts.  https://doi.org/10.1002/adsc.200700491 

3. Madhavan, N.; Gin, M. S. Increasing pH Causes Faster Anion and Cation Transport Rates through a Synthetic Ion Channel, ChemBioChem 2007, 8, 1834.  https://doi.org/10.1002/cbic.200700321 

2. Madhavan, N.; Robert, E. C.; Gin, M. S. A Highly Active Anion Selective Aminocyclodextrin Ion Channel, Angew. Chem. Int. Ed. 2005, 44, 7584.  https://doi.org/10.1002/anie.200501625 

1. Madhavan, N.; Gin, M. S. Synthesis and Photo cleavage of a New Dimeric bis(o-nitrobenzyl) Diether Tether, Chem. Commun. 2004, 23, 2728.  https://doi.org/10.1039/B408482A