NaMeBa is a joint seminar among the universities of Napoli, Messina and Bari.
The goal of the seminar is to study the Feynman integrals from an algebro-geometric point of view.
The meetings will be held online, on Microsoft Teams. Everybody is welcome to join. If you wish to join, please contact one of the organizers to receive instructions.
17/10/2025, 14:00--15:30.
Dino Festi: Introducing Feynman Integrals.
[W] Sections 2.1--2.3
24/10/2025, 14:00--15:30.
Simone Noja: Wick rotation and dimension regularization.
[W] Section 2.4
31/10/2025. 14:00--15:30.
Riccardo Pengo: The Feynman parameter representation.
[W] Sections. 2.5.1--2.5.3
07/11/2025. 14:00--15:30.
Riccardo Pengo et al.: Examples of Symanzik polynomials, and their combinatorics,
[W] Chapter 3, [P] Section 2.1
14/11/2025, 14:00-15:30,
Enrico Russo: Amplitudes and Feynman integrals in physics,
[W] Chapter 4
21/11/2025, 14:00-15:30,
Enrico Russo: Poincare representation and Feynman rules
[W] Chapter 4
28/11/2025, 14:00-15:30,
No seminar
05/12/2025, 14:00-15:30,
Dino Festi: One-loop Feynman integrals.
[W] Chapter 5, [BK]
12/12/2025, 14:00-15:30,
TBD: Landau singularities and twisted cohomology,
[W] Sections 6.6-6.7, [KS], [ACM]
19/12/2025, 14:00-15:30,
TBD: Sector decompositions and blow-ups.
[W] Chapter 10, [B] Sections 5-6
09/01/2025.
TBD: Examples of sector decompositions and blow-ups of linear spaces.
[W] Chapter 10, [B] Sections 5-6
16/01/2025.
TBD: Elliptic Feynman integrals.
[W] Chapter 13, [BV], [BKV]
[ACM] Angius, R., Cacciatori, S. L., & Massidda, A. (2025). Wall crossing structure
from quantum phenomena to Feynman Integrals, arXiv preprint
[B] Brown, F. (2017). Feynman amplitudes, coaction principle, and cosmic Galois group.
Communications in Number Theory and Physics, 11(3), 453–556
[BK] Bloch, S., & Kreimer, D. (2010). Feynman amplitudes and Landau singularities for one-loop graphs.
Communications in Number Theory and Physics, 4(4), 709–753.
[BKV] Bloch, S., Kerr, M., & Vanhove, P. (2017). Local mirror symmetry and the sunset Feynman integral.
Advances in Theoretical and Mathematical Physics, 21(6), 1373–1453.
[BV] Bloch, S., & Vanhove, P. (2015). The elliptic dilogarithm for the sunset graph.
Journal of Number Theory, 148, 328–364.
[KS] Kontsevich, M., & Soibelman, Y. (2024). Holomorphic Floer theory I: Exponential integrals
in finite and infinite dimensions, arXiv preprint
[P] Panzer, E. (2015). Feynman integrals and hyperlogarithms. PhD Thesis, Humboldt Universität zu Berlin
[W] Weinzierl, S. (2022). Feynman Integrals: A Comprehensive Treatment for Students and Researchers
First edition, UNITEXT for Physics, Springer International Publishing.