I have broad optimization and machine learning interests. In my PhD, I mostly studied stability and sensitivity analysis in multi-objective optimization. After my PhD, I have been doing research on the following topics:
Complexity of first order methods in machine learning
Zamani, M., Glineur, F., & Hendrickx, J. M. (2024). On the Set of Possible Minimizers of a Sum of Convex Functions. arXiv preprint arXiv:2403.05467.
Zamani, M., Abbaszadehpeivasti, H., & de Klerk, E. (2022). The exact worst-case convergence rate of the alternating direction method of multipliers. Mathematical Programming.
Zamani, M., & Glineur, F. (2023). Exact convergence rate of the last iterate in subgradient methods. arXiv preprint arXiv:2307.11134.
Zamani, M., Abbaszadehpeivasti, H., & de Klerk, E. (2022). Convergence rate analysis of the gradient descent-ascent method for convex-concave saddle-point problems. arXiv: submit/4477485.
Abbaszadehpeivasti, H., de Klerk, E., & Zamani, M. (2023). Conditions for linear convergence of the gradient method for non-convex optimization. Optimization Letters, 17(5), 1105-1125.
Abbaszadehpeivasti, H., de Klerk, E., & Zamani, M. (2023). On the rate of convergence of the difference-of-convex algorithm (DCA). Journal of Optimization Theory and Applications, 1-22.
Abbaszadehpeivasti, H., de Klerk, E., & Zamani, M. (2022). The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions. Optimization Letters, 16(6), 1649-1661.
Absolute value equations
Zamani, M., & Hladík, M. (2022). Error bounds and a condition number for the absolute value equations. Mathematical Programming, 1-29.
Zamani, M., & Hladík, M. (2021). A new concave minimization algorithm for the absolute value equation solution. Optimization Letters, 15(6), 2241-2254.
Hladíc, M & Zamani, M. (2023) Absolute Value Programming. Encyclopedia of Optimization.
Non-convex quadratic programming
Zamani, M. (2019). A new algorithm for concave quadratic programming. Journal of Global Optimization, 75(3), 655-681.
Zamani, M. (2022). New bounds for nonconvex quadratically constrained quadratic programming. Journal of Global Optimization.
Hladík, M., Hartman, D., & Zamani, M. (2021). Maximization of a PSD quadratic form and factorization. Optimization Letters, 15(7), 2515-2528.
Multi-objective optimization
Luc, D. T., Soleimani-Damaneh, M., & Zamani, M. (2018). Semi-differentiability of the marginal mapping in vector optimization. SIAM Journal on Optimization, 28(2), 1255-1281.
Zamani, M., Soleimani-Damaneh, M., & Kabgani, A. (2015). Robustness in nonsmooth nonlinear multi-objective programming. European Journal of Operational Research, 247(2), 370-378.
Zamani, M., & Soleimani-damaneh, M. (2022). Proper efficiency, scalarization and transformation in multi-objective optimization: unified approaches. Optimization, 71(3), 753-774.
Soleimani-Damaneh, M., & Zamani, M. (2016). On Benson’s scalarization in multiobjective optimization. Optimization Letters, 10(8), 1757-1762.
Soleimani–Damaneh, M., & Zamani, M. (2018). On compromise solutions in multiple objective programming. RAIRO-Operations Research, 52(2), 383-390.
PhD Thesis: Zamani, M. (2016, July). Scalarization and stability in multi-objective optimization. Avignon.
Non-smooth optimization