[8] Chien, M.T., Yang, W., Barnes, E.A., Maloney, E.D., & Vecchi, A.G. (2026). Deep-learning climate emulator reveals a global decrease in tropical cyclone activity in the 15th century under an El Niño-like sea surface temperature pattern (in prep)
[7] Chien, M.T., & Kim, D. (2026). Surface warming-driven changes in stratiform heating structure weaken and accelerate convectively coupled Kelvin waves: the role of melting-level rise, Geophysical Research Letters, submitted (Preprint)
[6] Chien, M.T., Barnes, E.A., & Maloney, E.D. (2025c). Modulation of tropical cyclogenesis by the convectively coupled Kelvin waves: insights from deep-learning climate emulator ACE2, Geophysical Research Letters, (Link)
[5] Chien, M.T., Barnes, E.A., & Maloney, E.D. (2025b). Modulation of tropical cyclogenesis on subseasonal-to-interannual timescales in the deep-learning climate emulator ACE2, IOP Machine Learning: Earth (Link)
[4] Chien, M.T., Kim, D., & Haertel, P. (2025a). Maintenance of convectively coupled Kelvin waves: internal thermodynamic feedback vs. external momentum forcing. Geophysical Research Letters (Link)
[3] Lee, S.H., Park, S.H., Chien, M.T., & Kim, D. (2025). Simulations of convectively coupled Kelvin waves (CCKWs) with three different cumulus parameterization schemes. Journal of Geophysical Research: Atmosphere, 130(9), e2024JD042738,(Link) (PDF)
[2] Chien, M.T., & Kim, D. (2024). Response of convectively coupled Kelvin waves to surface temperature forcing. Journal of Advanced Modeling Systems (Link) (PDF)
[1] Chien, M.T., & Kim, D. (2023). Representation of the convectively coupled Kelvin waves in modern reanalysis products. Journal of the Atmospheric Sciences, 80(2), 397-418. (Link) (PDF)