Laboratory of Electrochemical Systems Engineering

2024

40.     Feedback control of an experimental electrically-heated steam methane reformer

Çıtmacı, B.; Peters, D.; Cui, X.; Abdullah, F.; Almunaifi, F.; Chheda, P.; Morales-Guio, C. G.*; Christofides, P.D.*

Submitted 

39.     Rotating cylinder electrode in reactive CO2 capture: Identifying cctive C species via transport, VLE models and kinetics

Banerjee, A.; Yue, C.; Choi, J; Morales-Guio, C. G.*

Submitted 

38.     Reactive capture and electrochemical conversion of  CO2 with ionic liquids and deep eutectic solvents

Dongare, S.; Zeeshan, M.; Aydogdu, A. S.; Dikki, R.; KurtoğluÖztulum, S. F.; Coskun, O. K.; Muñoz, M.; Banerjee, A.; Gautam, M.; Ross, R. D.; Stanley, J.; Brower, R. S.; Muchharla, B.; Sacci, R. L.; Velázquez, J. M.; Kumar, B.; Yang, J.Y.; Hahn, C.; Keskin, S.; Morales-Guio, C. G.; Uzun, A.; Spurgeon, J. M.; Gurkan, B.*

Submitted

37.     Structure sensitivity and catalyst restructuring for CO2 electro-reduction on copper

Cheng, D.; Nguyen, K.-L. C.; Sumaria, V.; Wei, Z.; Zhang, Z.; Gee, W.; Li, Y.; Morales-Guio, C. G.; Heyde, M.; Roldan-Cuenya, B.; Alexandrova, A. N.*; Sautet, P.*

Submitted link to preprint

36.     Electrochemical CO2 reduction mechanism on copper: Relation between mesoscopic mass transport and intrinsic kinetics

Jang, J. ;Rüscher, M.; Winzely, M.; Rodriguez, D.; Reyes-Lopez, E.; Srivastava, S.; Christofides, P. D.; Sautet, P.; Morales-Guio, C. G.*

Submitted link to preprint

35.     Integrated CO2 capture and electrochemical conversion: Coupled effects of transport, kinetics and thermodynamics in the direct reduction of captured-CO2 adducts

Banerjee, A.; Morales-Guio, C. G.*

Submitted 

34.     Electroreduction of captured CO2 on silver catalysts: influence of capture agent and proton source

Kowalski, R.+; Banerjee, A.+; Yue, C.; Gracia, S. G.; Cheng, D.; Morales-Guio, C. G.*; Sautet, P.*

Submitted 

33.     Direct electrochemical reduction of ammonium carbamate on transition metal surfaces: Finding activity and stability descriptors beyond those for CO2 Reduction

Choi, J.; Chiu, S.; Banerjee, A.; Sacci, R.; Veith, G.; Stieber, C.; Hahn, C.; Alexandrova, A.*; Morales-Guio, C. G.*

Submitted  link to preprint

32.     Estimation-based model predictive control of an electrically-heated steam methane reforming process

Cui, X.; Çıtmacı, B.; Peters, D.; Abdullah, F.; Wang, Y.; Hsu, E.; Chheda, P. Morales-Guio, C. G.*; Christofides, P. D.*

Digital Chemical Engineering 2024, 10, 100153 Link to Article

31.     Model predictive control of an electrically-heated steam methane reformer

Çıtmacı, B.; Cui, X.; Abdullah, F.; Richard, D.; Peters, D.; Wang, Y.; Hsu, E.; Chheda, P.; Morales-Guio, C. G.*; Christofides, P.D.*

Digital Chemical Engineering 2024, 10, 100138  Link to Article


2023

30.     Machine learning-based predictive control using on-line model

linearization: Application to an experimental electrochemical reactor

Luo, J.; Çıtmacı, B.; Jang, J.; F. Abdullah.; Morales-Guio, C. G.*; Christofides, P.*

Chemical Engineering Research and Design 2023, 721-737 Link to Article


29.     Machine learning-based product concentration estimation, real-time optimization, and multivariable control of an experimental electrochemical reactor

Çıtmacı, B.; Luo, J.; Jang, J.; F. Abdullah.; Morales-Guio, C. G.; Christofides, P.*

Computer Aided Chemical Engineering 2023, 52, 1519-1524 Link to Article


28.     On the origin of carbon sources in the electrochemical upgrade of CO2 from carbon capture solutions

Shen, K.+; Cheng, D.+; Reyes-Lopez, E.; Jang, J.; Sautet, P.*; Morales-Guio, C. G.*

Joule 2023, 7, 1260-1276 Link to article


27.     Smart Manufacturing inspired approach to research, development, and scale-up of electrified chemical manufacturing systems

Richard, D.; Jang, J.; Çıtmacı, B.; Luo, J.; Canuso, V.; Korambath, P.; Morales-Leslie, O.; Davis, J.; Malkani, H.; Christofides, P.; Morales-Guio, C. G.*

iScience 2023, 106966 Link to article


26.     Electrochemical oxidation of methane to methanol on electrodeposited transition metal oxides

Shen, K.+; Kumari, S.+; Huang, Y.-C.; Jang, J.; Sautet, P.; Morales-Guio, C. G.*

Journal of the American Chemical Society 2023, 145, 12, 6927–6943 Link to article


25.     Machine learning-based ethylene and carbon monoxide estimation, real-time optimization, and multivariable feedback control of an experimental electrochemical reactor

Çıtmacı, B.; Luo, J.; Jang, J.; Morales-Guio, C. G.*; Christofides, P.*

Chemical Engineering Research and Design 2023, 191, 658-681 Link to article


24.     Quantifying transport and reaction electrocatalytic processes in a gastight rotating cylinder electrode reactor via integration of computational fluid dynamics modeling and experiments

Richard, D.; Tom, M.; Jang, J.; Yun, S.; Christofides, P. D.*; Morales-Guio, C. G.*

Electrochimica Acta 2023. 440, 141698 Link to article


2022

23.     Perspective on the electrochemical recovery of phosphate from wastewater streams

Snyder, N.; Morales-Guio, C. G.*

Electrochemical Science Advances 2022. Accepted, Link to article


22.     Digitalization of an experimental electrochemical reactor via the smart manufacturing innovation platform

Çıtmacı, B.; Luo, J.; Jang, J.; Korambath, P.; Morales-Guio, C. G.*; Davis, J. F.; Christofides, P. D.*

Digital Chemical Engineering 2022, 5, 100050  Link to article


21.     Machine learning-based ethylene concentration estimation, real-time optimization and feedback control of an experimental electrochemical reactor

Çıtmacı, B.; Luo, J.; Jang, J.; Canuso, V.; Richard, D; Ren, Y. M.; Morales-Guio, C. G.*; Christofides, P.*

Chemical Engineering Research and Design 2022, 185, 87-107 Link to article


20.     Gastight rotating cylinder electrode: Towards decoupling mass transport and intrinsic kinetics in electrocatalysis

Jang, J.; Rüscher, M.; Winzely, M.; Morales-Guio, C. G.*

AIChE Journal 2022, 68, e17605 Link to article


19.     Machine learning-based operational modeling of an electrochemical reactor: Handling data variability and improving empirical models

Luo, J.; Canuso, V.; Jang, J.; Zhe, W.; Morales-Guio, C. G.; Christofides, P.*

Industrial & Engineering Chemistry Research 2022, 61, 8399-8410. Link to article


2021

18.     Guiding the catalytic properties of copper for electrochemical CO2 reduction by metal atom decoration

Nishimura, Y. F.; Peng, H.-J.; Nitopi, S.; Bajdich, M.; Wang, L.; Morales-Guio, C. G.; Abild-Pedersen, F.; Jaramillo, T. F.; Hahn, C.*

ACS Applied Materials & Interfaces 2021, 13, 52044-52054 Link to article


17.     Recent advances in the electrochemical production of chemicals from methane 

Richard, D.; Huang, Y.-C.; Morales-Guio, C. G.*

Current Opinion in Electrochemistry 2021, 30, 100793. Link to article


2020

16.     Selective reduction of CO to acetaldehyde with CuAg electrocatalysts

Wang, L.; Higgins, D. C.; Ji, Y.; Morales-Guio, C. G.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*

PNAS 2020,117, 12572–12575. Link to article


15.     Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold  

Ringe, S.+; Morales-Guio, C. G.+; Chen, L. D.; Fields, M.; Jaramillo, T. F.; Hahn, C.; Chan, K.*

Nature Communications 2020, 11, 33. Link to article (+ co-first author)

            

2019

14.     Electrochemical Direct Partial Oxidation of Methane to Methanol (Future Energy Article)  

Jang, J.+; Shen, K.+; Morales-Guio, C. G.*

Joule 2019, 3, 2589-2593. Link to article (+ co-first author)              

13.     Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area 

Wang, L.; Nitopi, S. A.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.*; Jaramillo, T. F.*

Nature Catalysis 2019, 2, 702-708. Link to article              

2018

12.     Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility

Higgins, D. C.; Landers, A. T.; Yongfei, J.; Nitopi, S. A.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*

ACS Energy Letters 2018, 3, 2947-2955. Link to article             

* Denotes corresponding author(s)             

Publications before November 2018

11.     Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst

Morales-Guio, C. G.+; Cave, E. R.+; Nitopi S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.; Jaramillo, T. F. 

Nature Catalysis 2018, 1, 764–771. Link to article (+ co-first author)                           

Highlighted in Nature Reviews Materials. Link to highlight 

10.     Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure and pH on selectivity towards multi-carbon and oxygenated products

Wang, L.; Nitopi, S. A.;  Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; Jaramillo, T. F. 

ACS Catalysis 2018, 8, 7445–7454. Link to article

9.     Photoelectrochemical deposition of CoP on cuprous oxide photocathodes for solar hydrogen production

Stern, L.A.; Liardet, L.; Mayer M. T.; Morales-Guio, C. G.; Grätzel, M.; Hu, X. L.

Electrochemica Acta 2017, 235, 311-316. Link to article

8.     Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides catalysts as oxygen evolution catalysts

Morales-Guio, C. G.; Liardet, L.; Hu, X. L.

Journal of the American Chemical Society 2016, 138, 8946-8957. Link to article

7.     An optically transparent iron nickel oxide catalyst for solar water splitting

Morales-Guio, C. G.; Mayer, M. T.; Yella, A.; Tilley, S. D.; Grätzel, M.; Hu, X. L.

Journal of the American Chemical Society 2015, 137, 9927-9936.  Link to article

6.     Solar hydrogen production by amorphous silicon photocathodes coated with a magnetron sputtered Mo2C catalyst

Morales-Guio, C. G.; Thorwarth, K.; Niesen, B.; Liardet, L.; Patscheider, J.; Ballif, C.; Hu, X. L.

Journal of the American Chemical Society 2015, 137, 7035-7038. Link to article

5.     Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts

Morales-Guio, C. G.; Liardet, L.; Mayer, M. T.; Tilley, S. D.; Grätzel, M.; Hu, X. L.

Angewandte Chemie International Edition 2015, 54, 664-667. Link to article

4.     Amorphous molybdenum sulfides as hydrogen evolution catalysts

Morales-Guio, C. G.; Hu, X. L.

Accounts of Chemical Research 2014, 47, 2671–2681. Link to article

3.     Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution

Morales-Guio, C. G.; Stern, L.A.; Hu, X. L. 

Chemical Society Reviews 2014, 43, 6555-6569. Link to article

2.     Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst

Morales-Guio, C.G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X.L. 

Nature Communications 2014, 5, 3059. Link to article

1.     Highly selective catalytic reduction of nitro- to azoarenes under ambient conditions

Morales-Guio, C.G.; Yuranov, I.; Kiwi-Minsker, L. 

Topics in Catalysis 2014, 57, 17-20. Link to article